Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
SuiteSparseQRSupport.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire Nuentsa <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
11 #define EIGEN_SUITESPARSEQRSUPPORT_H
12 
13 namespace Eigen {
14 
15  template<typename MatrixType> class SPQR;
16  template<typename SPQRType> struct SPQRMatrixQReturnType;
17  template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
18  template <typename SPQRType, typename Derived> struct SPQR_QProduct;
19  namespace internal {
20  template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
21  {
22  typedef typename SPQRType::MatrixType ReturnType;
23  };
24  template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
25  {
26  typedef typename SPQRType::MatrixType ReturnType;
27  };
28  template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
29  {
30  typedef typename Derived::PlainObject ReturnType;
31  };
32  } // End namespace internal
33 
56 template<typename _MatrixType>
57 class SPQR
58 {
59  public:
60  typedef typename _MatrixType::Scalar Scalar;
61  typedef typename _MatrixType::RealScalar RealScalar;
62  typedef SuiteSparse_long Index ;
63  typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
64  typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
65  public:
66  SPQR()
67  : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
68  {
69  cholmod_l_start(&m_cc);
70  }
71 
72  SPQR(const _MatrixType& matrix)
73  : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
74  {
75  cholmod_l_start(&m_cc);
76  compute(matrix);
77  }
78 
79  ~SPQR()
80  {
81  SPQR_free();
82  cholmod_l_finish(&m_cc);
83  }
84  void SPQR_free()
85  {
86  cholmod_l_free_sparse(&m_H, &m_cc);
87  cholmod_l_free_sparse(&m_cR, &m_cc);
88  cholmod_l_free_dense(&m_HTau, &m_cc);
89  std::free(m_E);
90  std::free(m_HPinv);
91  }
92 
93  void compute(const _MatrixType& matrix)
94  {
95  if(m_isInitialized) SPQR_free();
96 
97  MatrixType mat(matrix);
98 
99  /* Compute the default threshold as in MatLab, see:
100  * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
101  * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
102  */
103  RealScalar pivotThreshold = m_tolerance;
104  if(m_useDefaultThreshold)
105  {
106  using std::max;
107  RealScalar max2Norm = 0.0;
108  for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
109  if(max2Norm==RealScalar(0))
110  max2Norm = RealScalar(1);
111  pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
112  }
113 
114  cholmod_sparse A;
115  A = viewAsCholmod(mat);
116  Index col = matrix.cols();
117  m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
118  &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
119 
120  if (!m_cR)
121  {
122  m_info = NumericalIssue;
123  m_isInitialized = false;
124  return;
125  }
126  m_info = Success;
127  m_isInitialized = true;
128  m_isRUpToDate = false;
129  }
133  inline Index rows() const {return m_cR->nrow; }
134 
138  inline Index cols() const { return m_cR->ncol; }
139 
144  template<typename Rhs>
145  inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
146  {
147  eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
148  eigen_assert(this->rows()==B.rows()
149  && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
150  return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
151  }
152 
153  template<typename Rhs, typename Dest>
154  void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
155  {
156  eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
157  eigen_assert(b.cols()==1 && "This method is for vectors only");
158 
159  //Compute Q^T * b
160  typename Dest::PlainObject y, y2;
161  y = matrixQ().transpose() * b;
162 
163  // Solves with the triangular matrix R
164  Index rk = this->rank();
165  y2 = y;
166  y.resize((std::max)(cols(),Index(y.rows())),y.cols());
167  y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
168 
169  // Apply the column permutation
170  // colsPermutation() performs a copy of the permutation,
171  // so let's apply it manually:
172  for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
173  for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
174 
175 // y.bottomRows(y.rows()-rk).setZero();
176 // dest = colsPermutation() * y.topRows(cols());
177 
178  m_info = Success;
179  }
180 
183  const MatrixType matrixR() const
184  {
185  eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
186  if(!m_isRUpToDate) {
187  m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
188  m_isRUpToDate = true;
189  }
190  return m_R;
191  }
193  SPQRMatrixQReturnType<SPQR> matrixQ() const
194  {
195  return SPQRMatrixQReturnType<SPQR>(*this);
196  }
199  {
200  eigen_assert(m_isInitialized && "Decomposition is not initialized.");
201  Index n = m_cR->ncol;
202  PermutationType colsPerm(n);
203  for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
204  return colsPerm;
205 
206  }
211  Index rank() const
212  {
213  eigen_assert(m_isInitialized && "Decomposition is not initialized.");
214  return m_cc.SPQR_istat[4];
215  }
217  void setSPQROrdering(int ord) { m_ordering = ord;}
219  void setPivotThreshold(const RealScalar& tol)
220  {
221  m_useDefaultThreshold = false;
222  m_tolerance = tol;
223  }
224 
226  cholmod_common *cholmodCommon() const { return &m_cc; }
227 
228 
235  {
236  eigen_assert(m_isInitialized && "Decomposition is not initialized.");
237  return m_info;
238  }
239  protected:
240  bool m_isInitialized;
241  bool m_analysisIsOk;
242  bool m_factorizationIsOk;
243  mutable bool m_isRUpToDate;
244  mutable ComputationInfo m_info;
245  int m_ordering; // Ordering method to use, see SPQR's manual
246  int m_allow_tol; // Allow to use some tolerance during numerical factorization.
247  RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
248  mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
249  mutable MatrixType m_R; // The sparse matrix R in Eigen format
250  mutable Index *m_E; // The permutation applied to columns
251  mutable cholmod_sparse *m_H; //The householder vectors
252  mutable Index *m_HPinv; // The row permutation of H
253  mutable cholmod_dense *m_HTau; // The Householder coefficients
254  mutable Index m_rank; // The rank of the matrix
255  mutable cholmod_common m_cc; // Workspace and parameters
256  bool m_useDefaultThreshold; // Use default threshold
257  template<typename ,typename > friend struct SPQR_QProduct;
258 };
259 
260 template <typename SPQRType, typename Derived>
261 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
262 {
263  typedef typename SPQRType::Scalar Scalar;
264  typedef typename SPQRType::Index Index;
265  //Define the constructor to get reference to argument types
266  SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
267 
268  inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
269  inline Index cols() const { return m_other.cols(); }
270  // Assign to a vector
271  template<typename ResType>
272  void evalTo(ResType& res) const
273  {
274  cholmod_dense y_cd;
275  cholmod_dense *x_cd;
276  int method = m_transpose ? SPQR_QTX : SPQR_QX;
277  cholmod_common *cc = m_spqr.cholmodCommon();
278  y_cd = viewAsCholmod(m_other.const_cast_derived());
279  x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
280  res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
281  cholmod_l_free_dense(&x_cd, cc);
282  }
283  const SPQRType& m_spqr;
284  const Derived& m_other;
285  bool m_transpose;
286 
287 };
288 template<typename SPQRType>
289 struct SPQRMatrixQReturnType{
290 
291  SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
292  template<typename Derived>
293  SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
294  {
295  return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
296  }
297  SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
298  {
299  return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
300  }
301  // To use for operations with the transpose of Q
302  SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
303  {
304  return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
305  }
306  const SPQRType& m_spqr;
307 };
308 
309 template<typename SPQRType>
310 struct SPQRMatrixQTransposeReturnType{
311  SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
312  template<typename Derived>
313  SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
314  {
315  return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
316  }
317  const SPQRType& m_spqr;
318 };
319 
320 namespace internal {
321 
322 template<typename _MatrixType, typename Rhs>
323 struct solve_retval<SPQR<_MatrixType>, Rhs>
324  : solve_retval_base<SPQR<_MatrixType>, Rhs>
325 {
326  typedef SPQR<_MatrixType> Dec;
327  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
328 
329  template<typename Dest> void evalTo(Dest& dst) const
330  {
331  dec()._solve(rhs(),dst);
332  }
333 };
334 
335 } // end namespace internal
336 
337 }// End namespace Eigen
338 #endif
RowXpr row(Index i)
Definition: DenseBase.h:750
const IndicesType & indices() const
Definition: PermutationMatrix.h:387
const internal::solve_retval< SPQR, Rhs > solve(const MatrixBase< Rhs > &B) const
Definition: SuiteSparseQRSupport.h:145
Definition: Constants.h:378
Index rows() const
Definition: SuiteSparseQRSupport.h:133
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SuiteSparseQRSupport.h:234
const internal::permut_matrix_product_retval< PermutationDerived, Derived, OnTheRight > operator*(const MatrixBase< Derived > &matrix, const PermutationBase< PermutationDerived > &permutation)
Definition: PermutationMatrix.h:539
SPQRMatrixQReturnType< SPQR > matrixQ() const
Get an expression of the matrix Q.
Definition: SuiteSparseQRSupport.h:193
cholmod_common * cholmodCommon() const
Definition: SuiteSparseQRSupport.h:226
Permutation matrix.
Definition: PermutationMatrix.h:312
cholmod_sparse viewAsCholmod(SparseMatrix< _Scalar, _Options, _Index > &mat)
Definition: CholmodSupport.h:52
void setSPQROrdering(int ord)
Set the fill-reducing ordering method to be used.
Definition: SuiteSparseQRSupport.h:217
void setPivotThreshold(const RealScalar &tol)
Set the tolerance tol to treat columns with 2-norm &lt; =tol as zero.
Definition: SuiteSparseQRSupport.h:219
Index cols() const
Definition: SuiteSparseQRSupport.h:138
const MatrixType matrixR() const
Definition: SuiteSparseQRSupport.h:183
Sparse QR factorization based on SuiteSparseQR library.
Definition: SuiteSparseQRSupport.h:15
Index rank() const
Definition: SuiteSparseQRSupport.h:211
Definition: Constants.h:376
Block< Derived > topLeftCorner(Index cRows, Index cCols)
Definition: SparseMatrixBase.h:157
ComputationInfo
Definition: Constants.h:374
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
PermutationType colsPermutation() const
Get the permutation that was applied to columns of A.
Definition: SuiteSparseQRSupport.h:198