10 #ifndef EIGEN_UMEYAMA_H
11 #define EIGEN_UMEYAMA_H
21 #ifndef EIGEN_PARSED_BY_DOXYGEN
31 template<
typename MatrixType,
typename OtherMatrixType>
32 struct umeyama_transform_matrix_type
35 MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
39 HomogeneousDimension = int(MinRowsAtCompileTime) ==
Dynamic ?
Dynamic : int(MinRowsAtCompileTime)+1
42 typedef Matrix<typename traits<MatrixType>::Scalar,
93 template <
typename Derived,
typename OtherDerived>
94 typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
97 typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
98 typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
100 typedef typename Derived::Index Index;
103 EIGEN_STATIC_ASSERT((internal::is_same<Scalar,
typename internal::traits<OtherDerived>::Scalar>::value),
104 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
106 enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
112 const Index m = src.rows();
113 const Index n = src.cols();
116 const RealScalar one_over_n = RealScalar(1) /
static_cast<RealScalar
>(n);
119 const VectorType src_mean = src.
rowwise().sum() * one_over_n;
120 const VectorType dst_mean = dst.
rowwise().sum() * one_over_n;
123 const RowMajorMatrixType src_demean = src.
colwise() - src_mean;
124 const RowMajorMatrixType dst_demean = dst.
colwise() - dst_mean;
127 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
130 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
135 TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
138 VectorType S = VectorType::Ones(m);
139 if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
143 Index rank = 0;
for (Index i=0; i<m; ++i)
if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
145 if ( svd.
matrixU().determinant() * svd.
matrixV().determinant() > Scalar(0) ) {
146 Rt.block(0,0,m,m).noalias() = svd.
matrixU()*svd.
matrixV().transpose();
148 const Scalar s = S(m-1); S(m-1) = Scalar(-1);
149 Rt.block(0,0,m,m).noalias() = svd.
matrixU() * S.asDiagonal() * svd.
matrixV().transpose();
153 Rt.block(0,0,m,m).noalias() = svd.
matrixU() * S.asDiagonal() * svd.
matrixV().transpose();
162 Rt.col(m).head(m) = dst_mean;
163 Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
164 Rt.block(0,0,m,m) *= c;
168 Rt.col(m).head(m) = dst_mean;
169 Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
177 #endif // EIGEN_UMEYAMA_H
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
const int Dynamic
Definition: Constants.h:21
Definition: Constants.h:264
Definition: Constants.h:331
const SingularValuesType & singularValues() const
Definition: JacobiSVD.h:641
const MatrixUType & matrixU() const
Definition: JacobiSVD.h:613
Definition: Constants.h:268
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
Definition: Umeyama.h:95
const MatrixVType & matrixV() const
Definition: JacobiSVD.h:629
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: ForwardDeclarations.h:224
Definition: Constants.h:266
const unsigned int RowMajorBit
Definition: Constants.h:53
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Definition: Constants.h:327
ConstColwiseReturnType colwise() const
Definition: VectorwiseOp.h:599
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
ConstRowwiseReturnType rowwise() const
Definition: VectorwiseOp.h:624