All Classes Namespaces Functions Variables Typedefs Enumerator Groups Pages
AutoDiffJacobian.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_AUTODIFF_JACOBIAN_H
11 #define EIGEN_AUTODIFF_JACOBIAN_H
12 
13 namespace Eigen
14 {
15 
16 template<typename Functor> class AutoDiffJacobian : public Functor
17 {
18 public:
19  AutoDiffJacobian() : Functor() {}
20  AutoDiffJacobian(const Functor& f) : Functor(f) {}
21 
22  // forward constructors
23  template<typename T0>
24  AutoDiffJacobian(const T0& a0) : Functor(a0) {}
25  template<typename T0, typename T1>
26  AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
27  template<typename T0, typename T1, typename T2>
28  AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
29 
30  enum {
31  InputsAtCompileTime = Functor::InputsAtCompileTime,
32  ValuesAtCompileTime = Functor::ValuesAtCompileTime
33  };
34 
35  typedef typename Functor::InputType InputType;
36  typedef typename Functor::ValueType ValueType;
37  typedef typename Functor::JacobianType JacobianType;
38  typedef typename JacobianType::Scalar Scalar;
39  typedef typename JacobianType::Index Index;
40 
41  typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
42  typedef AutoDiffScalar<DerivativeType> ActiveScalar;
43 
44 
45  typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
46  typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
47 
48  void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
49  {
50  eigen_assert(v!=0);
51  if (!_jac)
52  {
53  Functor::operator()(x, v);
54  return;
55  }
56 
57  JacobianType& jac = *_jac;
58 
59  ActiveInput ax = x.template cast<ActiveScalar>();
60  ActiveValue av(jac.rows());
61 
62  if(InputsAtCompileTime==Dynamic)
63  for (Index j=0; j<jac.rows(); j++)
64  av[j].derivatives().resize(this->inputs());
65 
66  for (Index i=0; i<jac.cols(); i++)
67  ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i);
68 
69  Functor::operator()(ax, &av);
70 
71  for (Index i=0; i<jac.rows(); i++)
72  {
73  (*v)[i] = av[i].value();
74  jac.row(i) = av[i].derivatives();
75  }
76  }
77 protected:
78 
79 };
80 
81 }
82 
83 #endif // EIGEN_AUTODIFF_JACOBIAN_H