All Classes Namespaces Functions Variables Typedefs Enumerator Groups Pages
LMqrsolv.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
6 //
7 // This code initially comes from MINPACK whose original authors are:
8 // Copyright Jorge More - Argonne National Laboratory
9 // Copyright Burt Garbow - Argonne National Laboratory
10 // Copyright Ken Hillstrom - Argonne National Laboratory
11 //
12 // This Source Code Form is subject to the terms of the Minpack license
13 // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
14 
15 #ifndef EIGEN_LMQRSOLV_H
16 #define EIGEN_LMQRSOLV_H
17 
18 namespace Eigen {
19 
20 namespace internal {
21 
22 template <typename Scalar,int Rows, int Cols, typename Index>
23 void lmqrsolv(
24  Matrix<Scalar,Rows,Cols> &s,
25  const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
26  const Matrix<Scalar,Dynamic,1> &diag,
27  const Matrix<Scalar,Dynamic,1> &qtb,
28  Matrix<Scalar,Dynamic,1> &x,
29  Matrix<Scalar,Dynamic,1> &sdiag)
30 {
31 
32  /* Local variables */
33  Index i, j, k, l;
34  Scalar temp;
35  Index n = s.cols();
36  Matrix<Scalar,Dynamic,1> wa(n);
37  JacobiRotation<Scalar> givens;
38 
39  /* Function Body */
40  // the following will only change the lower triangular part of s, including
41  // the diagonal, though the diagonal is restored afterward
42 
43  /* copy r and (q transpose)*b to preserve input and initialize s. */
44  /* in particular, save the diagonal elements of r in x. */
45  x = s.diagonal();
46  wa = qtb;
47 
48 
49  s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
50  /* eliminate the diagonal matrix d using a givens rotation. */
51  for (j = 0; j < n; ++j) {
52 
53  /* prepare the row of d to be eliminated, locating the */
54  /* diagonal element using p from the qr factorization. */
55  l = iPerm.indices()(j);
56  if (diag[l] == 0.)
57  break;
58  sdiag.tail(n-j).setZero();
59  sdiag[j] = diag[l];
60 
61  /* the transformations to eliminate the row of d */
62  /* modify only a single element of (q transpose)*b */
63  /* beyond the first n, which is initially zero. */
64  Scalar qtbpj = 0.;
65  for (k = j; k < n; ++k) {
66  /* determine a givens rotation which eliminates the */
67  /* appropriate element in the current row of d. */
68  givens.makeGivens(-s(k,k), sdiag[k]);
69 
70  /* compute the modified diagonal element of r and */
71  /* the modified element of ((q transpose)*b,0). */
72  s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
73  temp = givens.c() * wa[k] + givens.s() * qtbpj;
74  qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
75  wa[k] = temp;
76 
77  /* accumulate the tranformation in the row of s. */
78  for (i = k+1; i<n; ++i) {
79  temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
80  sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
81  s(i,k) = temp;
82  }
83  }
84  }
85 
86  /* solve the triangular system for z. if the system is */
87  /* singular, then obtain a least squares solution. */
88  Index nsing;
89  for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
90 
91  wa.tail(n-nsing).setZero();
92  s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
93 
94  // restore
95  sdiag = s.diagonal();
96  s.diagonal() = x;
97 
98  /* permute the components of z back to components of x. */
99  x = iPerm * wa;
100 }
101 
102 template <typename Scalar, int _Options, typename Index>
103 void lmqrsolv(
104  SparseMatrix<Scalar,_Options,Index> &s,
105  const PermutationMatrix<Dynamic,Dynamic> &iPerm,
106  const Matrix<Scalar,Dynamic,1> &diag,
107  const Matrix<Scalar,Dynamic,1> &qtb,
108  Matrix<Scalar,Dynamic,1> &x,
109  Matrix<Scalar,Dynamic,1> &sdiag)
110 {
111  /* Local variables */
112  typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
113  Index i, j, k, l;
114  Scalar temp;
115  Index n = s.cols();
116  Matrix<Scalar,Dynamic,1> wa(n);
117  JacobiRotation<Scalar> givens;
118 
119  /* Function Body */
120  // the following will only change the lower triangular part of s, including
121  // the diagonal, though the diagonal is restored afterward
122 
123  /* copy r and (q transpose)*b to preserve input and initialize R. */
124  wa = qtb;
125  FactorType R(s);
126  // Eliminate the diagonal matrix d using a givens rotation
127  for (j = 0; j < n; ++j)
128  {
129  // Prepare the row of d to be eliminated, locating the
130  // diagonal element using p from the qr factorization
131  l = iPerm.indices()(j);
132  if (diag(l) == Scalar(0))
133  break;
134  sdiag.tail(n-j).setZero();
135  sdiag[j] = diag[l];
136  // the transformations to eliminate the row of d
137  // modify only a single element of (q transpose)*b
138  // beyond the first n, which is initially zero.
139 
140  Scalar qtbpj = 0;
141  // Browse the nonzero elements of row j of the upper triangular s
142  for (k = j; k < n; ++k)
143  {
144  typename FactorType::InnerIterator itk(R,k);
145  for (; itk; ++itk){
146  if (itk.index() < k) continue;
147  else break;
148  }
149  //At this point, we have the diagonal element R(k,k)
150  // Determine a givens rotation which eliminates
151  // the appropriate element in the current row of d
152  givens.makeGivens(-itk.value(), sdiag(k));
153 
154  // Compute the modified diagonal element of r and
155  // the modified element of ((q transpose)*b,0).
156  itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
157  temp = givens.c() * wa(k) + givens.s() * qtbpj;
158  qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
159  wa(k) = temp;
160 
161  // Accumulate the transformation in the remaining k row/column of R
162  for (++itk; itk; ++itk)
163  {
164  i = itk.index();
165  temp = givens.c() * itk.value() + givens.s() * sdiag(i);
166  sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
167  itk.valueRef() = temp;
168  }
169  }
170  }
171 
172  // Solve the triangular system for z. If the system is
173  // singular, then obtain a least squares solution
174  Index nsing;
175  for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
176 
177  wa.tail(n-nsing).setZero();
178 // x = wa;
179  wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
180 
181  sdiag = R.diagonal();
182  // Permute the components of z back to components of x
183  x = iPerm * wa;
184 }
185 } // end namespace internal
186 
187 } // end namespace Eigen
188 
189 #endif // EIGEN_LMQRSOLV_H