Arrays
Constructors and Types
Core.AbstractArray — Type.AbstractArray{T,N}Supertype for N-dimensional arrays (or array-like types) with elements of type T. Array and other types are subtypes of this. See the manual section on the AbstractArray interface.
Base.AbstractVector — Type.AbstractVector{T}Supertype for one-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,1}.
Base.AbstractMatrix — Type.AbstractMatrix{T}Supertype for two-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,2}.
Core.Array — Type.Array{T,N} <: AbstractArray{T,N}N-dimensional dense array with elements of type T.
Core.Array — Method.Array{T}(undef, dims)
Array{T,N}(undef, dims)Construct an uninitialized N-dimensional Array containing elements of type T. N can either be supplied explicitly, as in Array{T,N}(undef, dims), or be determined by the length or number of dims. dims may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rank N is supplied explicitly, then it must match the length or number of dims. See uninit.
Examples
julia> A = Array{Float64,2}(undef, 2, 3) # N given explicitly
2×3 Array{Float64,2}:
6.90198e-310 6.90198e-310 6.90198e-310
6.90198e-310 6.90198e-310 0.0
julia> B = Array{Float64}(undef, 2) # N determined by the input
2-element Array{Float64,1}:
1.87103e-320
0.0Core.Array — Method.Array{T}(nothing, dims)
Array{T,N}(nothing, dims)Construct an N-dimensional Array containing elements of type T, initialized with nothing entries. Element type T must be able to hold these values, i.e. Nothing <: T.
Examples
julia> Array{Union{Nothing, String}}(nothing, 2)
2-element Array{Union{Nothing, String},1}:
nothing
nothing
julia> Array{Union{Nothing, Int}}(nothing, 2, 3)
2×3 Array{Union{Nothing, Int64},2}:
nothing nothing nothing
nothing nothing nothingCore.Array — Method.Array{T}(missing, dims)
Array{T,N}(missing, dims)Construct an N-dimensional Array containing elements of type T, initialized with missing entries. Element type T must be able to hold these values, i.e. Missing <: T.
Examples
julia> Array{Union{Missing, String}}(missing, 2)
2-element Array{Union{Missing, String},1}:
missing
missing
julia> Array{Union{Missing, Int}}(missing, 2, 3)
2×3 Array{Union{Missing, Int64},2}:
missing missing missing
missing missing missingCore.UndefInitializer — Type.UndefInitializerSingleton type used in array initialization, indicating the array-constructor-caller would like an uninitialized array. See also undef, an alias for UndefInitializer().
Examples
julia> Array{Float64,1}(UndefInitializer(), 3)
3-element Array{Float64,1}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Core.undef — Constant.undefAlias for UndefInitializer(), which constructs an instance of the singleton type UndefInitializer, used in array initialization to indicate the array-constructor-caller would like an uninitialized array.
Examples
julia> Array{Float64,1}(undef, 3)
3-element Array{Float64,1}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Base.Vector — Type.Vector{T} <: AbstractVector{T}One-dimensional dense array with elements of type T, often used to represent a mathematical vector. Alias for Array{T,1}.
Base.Vector — Method.Base.Vector — Method.Base.Vector — Method.Base.Matrix — Type.Matrix{T} <: AbstractMatrix{T}Two-dimensional dense array with elements of type T, often used to represent a mathematical matrix. Alias for Array{T,2}.
Base.Matrix — Method.Base.Matrix — Method.Matrix{T}(nothing, m, n)Construct a Matrix{T} of size m×n, initialized with nothing entries. Element type T must be able to hold these values, i.e. Nothing <: T.
Examples
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)
2×3 Array{Union{Nothing, String},2}:
nothing nothing nothing
nothing nothing nothingBase.Matrix — Method.Matrix{T}(missing, m, n)Construct a Matrix{T} of size m×n, initialized with missing entries. Element type T must be able to hold these values, i.e. Missing <: T.
Examples
julia> Matrix{Union{Missing, String}}(missing, 2, 3)
2×3 Array{Union{Missing, String},2}:
missing missing missing
missing missing missingBase.getindex — Method.getindex(type[, elements...])Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be specified using Type[a,b,c,...].
Examples
julia> Int8[1, 2, 3]
3-element Array{Int8,1}:
1
2
3
julia> getindex(Int8, 1, 2, 3)
3-element Array{Int8,1}:
1
2
3Base.zeros — Function.Base.ones — Function.ones([T=Float64,] dims...)Create an Array, with element type T, of all ones with size specified by dims. See also: fill, zeros.
Examples
julia> ones(1,2)
1×2 Array{Float64,2}:
1.0 1.0
julia> ones(ComplexF64, 2, 3)
2×3 Array{Complex{Float64},2}:
1.0+0.0im 1.0+0.0im 1.0+0.0im
1.0+0.0im 1.0+0.0im 1.0+0.0imBase.BitArray — Type.BitArray{N} <: DenseArray{Bool, N}Space-efficient N-dimensional boolean array, which stores one bit per boolean value.
Base.BitArray — Method.BitArray(undef, dims::Integer...)
BitArray{N}(undef, dims::NTuple{N,Int})Construct an undef BitArray with the given dimensions. Behaves identically to the Array constructor. See undef.
Examples
julia> BitArray(undef, 2, 2)
2×2 BitArray{2}:
false false
false true
julia> BitArray(undef, (3, 1))
3×1 BitArray{2}:
false
true
falseBase.BitArray — Method.BitArray(itr)Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.
Examples
julia> BitArray([1 0; 0 1])
2×2 BitArray{2}:
true false
false true
julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)
2×3 BitArray{2}:
false true false
true false false
julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)
6-element BitArray{1}:
false
true
false
true
false
falseBase.trues — Function.trues(dims)Create a BitArray with all values set to true.
Examples
julia> trues(2,3)
2×3 BitArray{2}:
true true true
true true trueBase.falses — Function.falses(dims)Create a BitArray with all values set to false.
Examples
julia> falses(2,3)
2×3 BitArray{2}:
false false false
false false falseBase.fill — Function.fill(x, dims)Create an array filled with the value x. For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with each element initialized to 1.0.
Examples
julia> fill(1.0, (5,5))
5×5 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0If x is an object reference, all elements will refer to the same object. fill(Foo(), dims) will return an array filled with the result of evaluating Foo() once.
Base.fill! — Function.fill!(A, x)Fill array A with the value x. If x is an object reference, all elements will refer to the same object. fill!(A, Foo()) will return A filled with the result of evaluating Foo() once.
Examples
julia> A = zeros(2,3)
2×3 Array{Float64,2}:
0.0 0.0 0.0
0.0 0.0 0.0
julia> fill!(A, 2.)
2×3 Array{Float64,2}:
2.0 2.0 2.0
2.0 2.0 2.0
julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A
3-element Array{Array{Int64,1},1}:
[2, 1, 1]
[2, 1, 1]
[2, 1, 1]
julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())
3-element Array{Int64,1}:
1
1
1Base.similar — Method.similar(array, [element_type=eltype(array)], [dims=size(array)])Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is an Array{element_type}(undef, dims...).
For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4)
1×4 Array{Int64,2}:
4419743872 4374413872 4419743888 0Conversely, similar(trues(10,10), 2) returns an uninitialized BitVector with two elements since BitArrays are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2)
2-element BitArray{1}:
false
falseSince BitArrays can only store elements of type Bool, however, if you request a different element type it will create a regular Array instead:
julia> similar(falses(10), Float64, 2, 4)
2×4 Array{Float64,2}:
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314Base.similar — Method.similar(storagetype, indices)Create an uninitialized mutable array analogous to that specified by storagetype, but with indices specified by the last argument. storagetype might be a type or a function.
Examples:
similar(Array{Int}, axes(A))creates an array that "acts like" an Array{Int} (and might indeed be backed by one), but which is indexed identically to A. If A has conventional indexing, this will be identical to Array{Int}(undef, size(A)), but if A has unconventional indexing then the indices of the result will match A.
similar(BitArray, (axes(A, 2),))would create a 1-dimensional logical array whose indices match those of the columns of A.
similar(dims->zeros(Int, dims), axes(A))would create an array of Int, initialized to zero, matching the indices of A.
Basic functions
Base.ndims — Function.ndims(A::AbstractArray) -> IntegerReturn the number of dimensions of A.
Examples
julia> A = fill(1, (3,4,5));
julia> ndims(A)
3Base.size — Function.size(A::AbstractArray, [dim...])Return a tuple containing the dimensions of A. Optionally you can specify the dimension(s) you want the length of, and get the length of that dimension, or a tuple of the lengths of dimensions you asked for.
Note that size may not be defined for arrays with non-standard indices, in which case axes may be useful. See the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (2,3,4));
julia> size(A, 2)
3
julia> size(A, 3, 2)
(4, 3)Base.axes — Method.axes(A)Return the tuple of valid indices for array A.
Examples
julia> A = fill(1, (5,6,7));
julia> axes(A)
(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))Base.axes — Method.axes(A, d)Return the valid range of indices for array A along dimension d.
See also size, and the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (5,6,7));
julia> axes(A, 2)
Base.OneTo(6)Base.length — Method.length(collection) -> IntegerReturn the number of elements in the collection.
Use lastindex to get the last valid index of an indexable collection.
Examples
julia> length(1:5)
5
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4Base.eachindex — Function.eachindex(A...)Create an iterable object for visiting each index of an AbstractArray A in an efficient manner. For array types that have opted into fast linear indexing (like Array), this is simply the range 1:length(A). For other array types, return a specialized Cartesian range to efficiently index into the array with indices specified for every dimension. For other iterables, including strings and dictionaries, return an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
If you supply more than one AbstractArray argument, eachindex will create an iterable object that is fast for all arguments (a UnitRange if all inputs have fast linear indexing, a CartesianIndices otherwise). If the arrays have different sizes and/or dimensionalities, eachindex will return an iterable that spans the largest range along each dimension.
Examples
julia> A = [1 2; 3 4];
julia> for i in eachindex(A) # linear indexing
println(i)
end
1
2
3
4
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
println(i)
end
CartesianIndex(1, 1)
CartesianIndex(2, 1)Base.linearindices — Function.linearindices(A)Return a UnitRange specifying the valid range of indices for A[i] where i is an Int. For arrays with conventional indexing (indices start at 1), or any multidimensional array, this is 1:length(A); however, for one-dimensional arrays with unconventional indices, this is axes(A, 1).
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
Examples
julia> A = fill(1, (5,6,7));
julia> b = linearindices(A);
julia> extrema(b)
(1, 210)Base.IndexStyle — Type.IndexStyle(A)
IndexStyle(typeof(A))IndexStyle specifies the "native indexing style" for array A. When you define a new AbstractArray type, you can choose to implement either linear indexing or cartesian indexing. If you decide to implement linear indexing, then you must set this trait for your array type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()The default is IndexCartesian().
Julia's internal indexing machinery will automatically (and invisibly) convert all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for your AbstractArray, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular, eachindex creates an iterator whose type depends on the setting of this trait.
Base.conj! — Function.conj!(A)Transform an array to its complex conjugate in-place.
See also conj.
Examples
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Array{Complex{Int64},2}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Array{Complex{Int64},2}:
1-1im 2+1im
2-2im 3-1imBase.stride — Function.stride(A, k::Integer)Return the distance in memory (in number of elements) between adjacent elements in dimension k.
Examples
julia> A = fill(1, (3,4,5));
julia> stride(A,2)
3
julia> stride(A,3)
12Base.strides — Function.strides(A)Return a tuple of the memory strides in each dimension.
Examples
julia> A = fill(1, (3,4,5));
julia> strides(A)
(1, 3, 12)Broadcast and vectorization
See also the dot syntax for vectorizing functions; for example, f.(args...) implicitly calls broadcast(f, args...). Rather than relying on "vectorized" methods of functions like sin to operate on arrays, you should use sin.(a) to vectorize via broadcast.
Base.broadcast — Function.broadcast(f, As...)Broadcasts the arrays, tuples, Refs and/or scalars As to a container of the appropriate type and dimensions. In this context, anything that is not a subtype of AbstractArray, Ref (except for Ptrs) or Tuple is considered a scalar. The resulting container is established by the following rules:
If all the arguments are scalars, it returns a scalar.
If the arguments are tuples and zero or more scalars, it returns a tuple.
If the arguments contain at least one array or
Ref, it returns an array (expanding singleton dimensions), and treatsRefs as 0-dimensional arrays, and tuples as 1-dimensional arrays.
A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and nested f.(g.(args...)) calls are fused into a single broadcast loop.
Examples
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Array{Int64,1}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> broadcast(+, 1.0, (0, -2.0), Ref(1))
2-element Array{Float64,1}:
2.0
0.0
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Array{String,1}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
Base.broadcast! — Function.broadcast!(f, dest, As...)Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only used to store the result, and does not supply arguments to f unless it is also listed in the As, as in broadcast!(f, A, A, B) to perform A[:] = broadcast(f, A, B).
Base.Broadcast.@__dot__ — Macro.@. exprConvert every function call or operator in expr into a "dot call" (e.g. convert f(x) to f.(x)), and convert every assignment in expr to a "dot assignment" (e.g. convert += to .+=).
If you want to avoid adding dots for selected function calls in expr, splice those function calls in with $. For example, @. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).
(@. is equivalent to a call to @__dot__.)
Examples
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Array{Float64,1}:
3.5244129544236893
4.727892280477045
3.4233600241796016Base.Broadcast.broadcast_getindex — Function.broadcast_getindex(A, inds...)Equivalent to broadcasting the inds arrays to a common size and returning an array [A[ks...] for ks in zip(indsb...)] (where indsb would be the broadcast inds). The shape of the output is equal to the shape of each element of indsb.
Examples
julia> A = [11 12; 21 22]
2×2 Array{Int64,2}:
11 12
21 22
julia> A[1:2, 1:2]
2×2 Array{Int64,2}:
11 12
21 22
julia> broadcast_getindex(A, 1:2, 1:2)
2-element Array{Int64,1}:
11
22
julia> A[1:2, 2:-1:1]
2×2 Array{Int64,2}:
12 11
22 21
julia> broadcast_getindex(A, 1:2, 2:-1:1)
2-element Array{Int64,1}:
12
21Because the indices are all vectors, these calls are like [A[i[k], j[k]] for k = 1:2] where i and j are the two index vectors.
julia> broadcast_getindex(A, 1:2, (1:2)')
2×2 Array{Int64,2}:
11 12
21 22
julia> broadcast_getindex(A, (1:2)', 1:2)
2×2 Array{Int64,2}:
11 21
12 22
julia> broadcast_getindex(A, [1 2 1; 1 2 2], [1, 2])
2×3 Array{Int64,2}:
11 21 11
12 22 22Base.Broadcast.broadcast_setindex! — Function.broadcast_setindex!(A, X, inds...)Efficient element-by-element setting of the values of A in a pattern established by inds. Equivalent to broadcasting the X and inds arrays to a common size, and then executing
for (is, js) in zip(zip(indsb), eachindex(Xb))
A[is...] = Xb[js...]
endwhere Xb and indsb are the broadcast X and inds.
See broadcast_getindex for examples of the treatment of inds.
For specializing broadcast on custom types, see
Base.Broadcast.BroadcastStyle — Type.BroadcastStyle is an abstract type and trait-function used to determine behavior of objects under broadcasting. BroadcastStyle(typeof(x)) returns the style associated with x. To customize the broadcasting behavior of a type, one can declare a style by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()One then writes method(s) (at least broadcast_similar) operating on MyContainerStyle. There are also several pre-defined subtypes of BroadcastStyle that you may be able to leverage; see the Interfaces chapter for more information.
Base.Broadcast.broadcast_similar — Function.broadcast_similar(f, ::BroadcastStyle, ::Type{ElType}, inds, As...)Allocate an output object for broadcast, appropriate for the indicated Broadcast.BroadcastStyle. ElType and inds specify the desired element type and indices of the container. f is the broadcast operation, and As... are the arguments supplied to broadcast.
Base.Broadcast.broadcast_indices — Function.Base.broadcast_indices(::SrcStyle, A)Compute the indices for objects A with BroadcastStyle SrcStyle. If needed, you can specialize this method for your styles. You should only need to provide a custom implementation for non-AbstractArrayStyles.
Base.Broadcast.Scalar — Type.Broadcast.Scalar() is a BroadcastStyle indicating that an object is not treated as a container for the purposes of broadcasting. This is the default for objects that have not customized BroadcastStyle.
Broadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style associated with an AbstractArray type. The N parameter is the dimensionality, which can be handy for AbstractArray types that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()For AbstractArray types that support arbitrary dimensionality, N can be set to Any:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end
Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()In cases where you want to be able to mix multiple AbstractArrayStyles and keep track of dimensionality, your style needs to support a Val constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end
(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()Note that if two or more AbstractArrayStyle subtypes conflict, broadcasting machinery will fall back to producing Arrays. If this is undesirable, you may need to define binary BroadcastStyle rules to control the output type.
See also Broadcast.DefaultArrayStyle.
Base.Broadcast.ArrayStyle — Type.Broadcast.ArrayStyle{MyArrayType}() is a BroadcastStyle indicating that an object behaves as an array for broadcasting. It presents a simple way to construct Broadcast.AbstractArrayStyles for specific AbstractArray container types. Broadcast styles created this way lose track of dimensionality; if keeping track is important for your type, you should create your own custom Broadcast.AbstractArrayStyle.
Base.Broadcast.DefaultArrayStyle — Type.Broadcast.DefaultArrayStyle{N}() is a BroadcastStyle indicating that an object behaves as an N-dimensional array for broadcasting. Specifically, DefaultArrayStyle is used for any AbstractArray type that hasn't defined a specialized style, and in the absence of overrides from other broadcast arguments the resulting output type is Array. When there are multiple inputs to broadcast, DefaultArrayStyle "wins" over Broadcast.Scalar but "loses" to any other Broadcast.ArrayStyle.
Indexing and assignment
Base.getindex — Method.getindex(A, inds...)Return a subset of array A as specified by inds, where each ind may be an Int, an AbstractRange, or a Vector. See the manual section on array indexing for details.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> getindex(A, 1)
1
julia> getindex(A, [2, 1])
2-element Array{Int64,1}:
3
1
julia> getindex(A, 2:4)
3-element Array{Int64,1}:
3
2
4Base.setindex! — Method.setindex!(A, X, inds...)Store values from array X within some subset of A as specified by inds.
Base.copyto! — Method.copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> destCopy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the two regions must match.
Base.isassigned — Function.isassigned(array, i) -> BoolTest whether the given array has a value associated with index i. Return false if the index is out of bounds, or has an undefined reference.
Examples
julia> isassigned(rand(3, 3), 5)
true
julia> isassigned(rand(3, 3), 3 * 3 + 1)
false
julia> mutable struct Foo end
julia> v = similar(rand(3), Foo)
3-element Array{Foo,1}:
#undef
#undef
#undef
julia> isassigned(v, 1)
falseBase.Colon — Type.Colon()Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted by to_indices to an internal vector type (Base.Slice) to represent the collection of indices they span before being used.
The singleton instance of Colon is also a function used to construct ranges; see :.
Base.IteratorsMD.CartesianIndex — Type.CartesianIndex(i, j, k...) -> I
CartesianIndex((i, j, k...)) -> ICreate a multidimensional index I, which can be used for indexing a multidimensional array A. In particular, A[I] is equivalent to A[i,j,k...]. One can freely mix integer and CartesianIndex indices; for example, A[Ipre, i, Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.
A CartesianIndex is sometimes produced by eachindex, and always when iterating with an explicit CartesianIndices.
Examples
julia> A = reshape(Vector(1:16), (2, 2, 2, 2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> A[CartesianIndex((1, 1, 1, 1))]
1
julia> A[CartesianIndex((1, 1, 1, 2))]
9
julia> A[CartesianIndex((1, 1, 2, 1))]
5CartesianIndices(sz::Dims) -> R
CartesianIndices(istart:istop, jstart:jstop, ...) -> RDefine a region R spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, where for I in R ... end will return CartesianIndex indices I equivalent to the nested loops
for j = jstart:jstop
for i = istart:istop
...
end
endConsequently these can be useful for writing algorithms that work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> RAs a convenience, constructing a CartesianIndices from an array makes a range of its indices.
Examples
julia> foreach(println, CartesianIndices((2, 2, 2)))
CartesianIndex(1, 1, 1)
CartesianIndex(2, 1, 1)
CartesianIndex(1, 2, 1)
CartesianIndex(2, 2, 1)
CartesianIndex(1, 1, 2)
CartesianIndex(2, 1, 2)
CartesianIndex(1, 2, 2)
CartesianIndex(2, 2, 2)
julia> CartesianIndices(fill(1, (2,3)))
2×3 CartesianIndices{2,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}}:
CartesianIndex(1, 1) CartesianIndex(1, 2) CartesianIndex(1, 3)
CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 3)Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that a CartesianIndices is an AbstractArray and can be indexed linearly:
julia> cartesian = CartesianIndices(1:3,1:2)
3×2 CartesianIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:
CartesianIndex(1, 1) CartesianIndex(1, 2)
CartesianIndex(2, 1) CartesianIndex(2, 2)
CartesianIndex(3, 1) CartesianIndex(3, 2)
julia> cartesian[4]
CartesianIndex(1, 2)For cartesian to linear index conversion, see LinearIndices.
Base.IteratorsMD.LinearIndices — Type.LinearIndices(inds::CartesianIndices) -> R
LinearIndices(sz::Dims) -> R
LinearIndices(istart:istop, jstart:jstop, ...) -> RDefine a mapping between cartesian indices and the corresponding linear index into a CartesianIndices.
Example
The main purpose of this type is intuitive conversion from cartesian to linear indexing:
julia> linear = LinearIndices(1:3,1:2)
LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}} with indices 1:3×1:2:
1 4
2 5
3 6
julia> linear[1,2]
4Base.to_indices — Function.to_indices(A, I::Tuple)Convert the tuple I to a tuple of indices for use in indexing into array A.
The returned tuple must only contain either Ints or AbstractArrays of scalar indices that are supported by array A. It will error upon encountering a novel index type that it does not know how to process.
For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i. While this internal function is not intended to be called directly, Base.to_index may be extended by custom array or index types to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into which they index. To support those cases, to_indices(A, I) calls to_indices(A, axes(A), I), which then recursively walks through both the given tuple of indices and the dimensional indices of A in tandem. As such, not all index types are guaranteed to propagate to Base.to_index.
Base.checkbounds — Function.checkbounds(Bool, A, I...)Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely on A's indices and checkindex.
See also checkindex.
Examples
julia> A = rand(3, 3);
julia> checkbounds(Bool, A, 2)
true
julia> checkbounds(Bool, A, 3, 4)
false
julia> checkbounds(Bool, A, 1:3)
true
julia> checkbounds(Bool, A, 1:3, 2:4)
falsecheckbounds(A, I...)Throw an error if the specified indices I are not in bounds for the given array A.
Base.checkindex — Function.checkindex(Bool, inds::AbstractUnitRange, index)Return true if the given index is within the bounds of inds. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.
Examples
julia> checkindex(Bool, 1:20, 8)
true
julia> checkindex(Bool, 1:20, 21)
falseViews (SubArrays and other view types)
Base.view — Function.view(A, inds...)Like getindex, but returns a view into the parent array A with the given indices instead of making a copy. Calling getindex or setindex! on the returned SubArray computes the indices to the parent array on the fly without checking bounds.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> b = view(A, :, 1)
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
0
0
julia> A # Note A has changed even though we modified b
2×2 Array{Int64,2}:
0 2
0 4Base.@view — Macro.@view A[inds...]Creates a SubArray from an indexing expression. This can only be applied directly to a reference expression (e.g. @view A[1,2:end]), and should not be used as the target of an assignment (e.g. @view(A[1,2:end]) = ...). See also @views to switch an entire block of code to use views for slicing.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> b = @view A[:, 1]
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
0
0
julia> A
2×2 Array{Int64,2}:
0 2
0 4Base.@views — Macro.@views expressionConvert every array-slicing operation in the given expression (which may be a begin/end block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed to array[...]) are unaffected.
The @views macro only affects array[...] expressions that appear explicitly in the given expression, not array slicing that occurs in functions called by that code.
Examples
julia> A = zeros(3, 3);
julia> @views for row in 1:3
b = A[row, :]
b[:] = row
end
julia> A
3×3 Array{Float64,2}:
1.0 1.0 1.0
2.0 2.0 2.0
3.0 3.0 3.0Base.parent — Function.parent(A)Returns the "parent array" of an array view type (e.g., SubArray), or the array itself if it is not a view.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> V = view(A, 1:2, :)
2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:
1 2
3 4
julia> parent(V)
2×2 Array{Int64,2}:
1 2
3 4Base.parentindices — Function.parentindices(A)From an array view A, returns the corresponding indices in the parent.
Base.selectdim — Function.selectdim(A, d::Integer, i)Return a view of all the data of A where the index for dimension d equals i.
Equivalent to view(A,:,:,...,i,:,:,...) where i is in position d.
Examples
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Array{Int64,2}:
1 2 3 4
5 6 7 8
julia> selectdim(A, 2, 3)
2-element view(::Array{Int64,2}, Base.OneTo(2), 3) with eltype Int64:
3
7Base.reinterpret — Function.reinterpret(type, A)Change the type-interpretation of a block of memory. For arrays, this constructs a view of the array with the same binary data as the given array, but with the specified element type. For example, reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding to UInt32(7) as a Float32.
Examples
julia> reinterpret(Float32, UInt32(7))
1.0f-44
julia> reinterpret(Float32, UInt32[1 2 3 4 5])
1×5 reinterpret(Float32, ::Array{UInt32,2}):
1.4013e-45 2.8026e-45 4.2039e-45 5.60519e-45 7.00649e-45Base.reshape — Function.reshape(A, dims...) -> R
reshape(A, dims) -> RReturn an array R with the same data as A, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that setting elements of R alters the values of A and vice versa.
The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a :, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original array A. The total number of elements must not change.
julia> A = Vector(1:16)
16-element Array{Int64,1}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
julia> reshape(A, (4, 4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reshape(A, 2, :)
2×8 Array{Int64,2}:
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16Base.squeeze — Function.squeeze(A, dims)Remove the dimensions specified by dims from array A. Elements of dims must be unique and within the range 1:ndims(A). size(A,i) must equal 1 for all i in dims.
Examples
julia> a = reshape(Vector(1:4),(2,2,1,1))
2×2×1×1 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
julia> squeeze(a,3)
2×2×1 Array{Int64,3}:
[:, :, 1] =
1 3
2 4Base.vec — Function.vec(a::AbstractArray) -> VectorReshape the array a as a one-dimensional column vector. The resulting array shares the same underlying data as a, so modifying one will also modify the other.
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> vec(a)
6-element Array{Int64,1}:
1
4
2
5
3
6See also reshape.
Concatenation and permutation
Base.cat — Function.cat(dims, A...)Concatenate the input arrays along the specified dimensions in the iterable dims. For dimensions not in dims, all input arrays should have the same size, which will also be the size of the output array along that dimension. For dimensions in dims, the size of the output array is the sum of the sizes of the input arrays along that dimension. If dims is a single number, the different arrays are tightly stacked along that dimension. If dims is an iterable containing several dimensions, this allows one to construct block diagonal matrices and their higher-dimensional analogues by simultaneously increasing several dimensions for every new input array and putting zero blocks elsewhere. For example, cat([1,2], matrices...) builds a block diagonal matrix, i.e. a block matrix with matrices[1], matrices[2], ... as diagonal blocks and matching zero blocks away from the diagonal.
Base.vcat — Function.vcat(A...)Concatenate along dimension 1.
Examples
julia> a = [1 2 3 4 5]
1×5 Array{Int64,2}:
1 2 3 4 5
julia> b = [6 7 8 9 10; 11 12 13 14 15]
2×5 Array{Int64,2}:
6 7 8 9 10
11 12 13 14 15
julia> vcat(a,b)
3×5 Array{Int64,2}:
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
julia> c = ([1 2 3], [4 5 6])
([1 2 3], [4 5 6])
julia> vcat(c...)
2×3 Array{Int64,2}:
1 2 3
4 5 6Base.hcat — Function.hcat(A...)Concatenate along dimension 2.
Examples
julia> a = [1; 2; 3; 4; 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> b = [6 7; 8 9; 10 11; 12 13; 14 15]
5×2 Array{Int64,2}:
6 7
8 9
10 11
12 13
14 15
julia> hcat(a,b)
5×3 Array{Int64,2}:
1 6 7
2 8 9
3 10 11
4 12 13
5 14 15
julia> c = ([1; 2; 3], [4; 5; 6])
([1, 2, 3], [4, 5, 6])
julia> hcat(c...)
3×2 Array{Int64,2}:
1 4
2 5
3 6Base.hvcat — Function.hvcat(rows::Tuple{Vararg{Int}}, values...)Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c; d e f]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> hvcat((3,3), a,b,c,d,e,f)
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> [a b;c d; e f]
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f)
3×2 Array{Int64,2}:
1 2
3 4
5 6If the first argument is a single integer n, then all block rows are assumed to have n block columns.
Base.vect — Function.vect(X...)Create a Vector with element type computed from the promote_typeof of the argument, containing the argument list.
Base.circshift — Function.circshift(A, shifts)Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or vector giving the amount to shift in each dimension, or an integer to shift only in the first dimension.
Examples
julia> b = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Array{Int64,2}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Array{Int64,2}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
julia> a = BitArray([true, true, false, false, true])
5-element BitArray{1}:
true
true
false
false
true
julia> circshift(a, 1)
5-element BitArray{1}:
true
true
true
false
false
julia> circshift(a, -1)
5-element BitArray{1}:
true
false
false
true
trueSee also circshift!.
Base.circshift! — Function.circshift!(dest, src, shifts)Circularly shift, i.e. rotate, the data in src, storing the result in dest. shifts specifies the amount to shift in each dimension.
The dest array must be distinct from the src array (they cannot alias each other).
See also circshift.
Base.circcopy! — Function.circcopy!(dest, src)Copy src to dest, indexing each dimension modulo its length. src and dest must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap dest agrees with src.
Examples
julia> src = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> dest = OffsetArray{Int}(undef, (0:3,2:5))
julia> circcopy!(dest, src)
OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3
julia> dest[1:3,2:4] == src[1:3,2:4]
trueBase.findall — Method.findall(A)Return a vector I of the true indices or keys of A. If there are no such elements of A, return an empty array. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [true, false, false, true]
4-element Array{Bool,1}:
true
false
false
true
julia> findall(A)
2-element Array{Int64,1}:
1
4
julia> A = [true false; false true]
2×2 Array{Bool,2}:
true false
false true
julia> findall(A)
2-element Array{CartesianIndex{2},1}:
CartesianIndex(1, 1)
CartesianIndex(2, 2)
julia> findall(falses(3))
0-element Array{Int64,1}Base.findall — Method.findall(f::Function, A)Return a vector I of the indices or keys of A where f(A[I]) returns true. If there are no such elements of A, return an empty array.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> x = [1, 3, 4]
3-element Array{Int64,1}:
1
3
4
julia> findall(isodd, x)
2-element Array{Int64,1}:
1
2
julia> A = [1 2 0; 3 4 0]
2×3 Array{Int64,2}:
1 2 0
3 4 0
julia> findall(isodd, A)
2-element Array{CartesianIndex{2},1}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
julia> findall(!iszero, A)
4-element Array{CartesianIndex{2},1}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
CartesianIndex(1, 2)
CartesianIndex(2, 2)
julia> d = Dict(:A => 10, :B => -1, :C => 0)
Dict{Symbol,Int64} with 3 entries:
:A => 10
:B => -1
:C => 0
julia> findall(x -> x >= 0, d)
2-element Array{Symbol,1}:
:A
:C
Base.findfirst — Method.findfirst(A)Return the index or key of the first true value in A. Return nothing if no such value is found. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [false, false, true, false]
4-element Array{Bool,1}:
false
false
true
false
julia> findfirst(A)
3
julia> findfirst(falses(3)) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Array{Bool,2}:
false false
true false
julia> findfirst(A)
CartesianIndex(2, 1)Base.findfirst — Method.findfirst(predicate::Function, A)Return the index or key of the first element of A for which predicate returns true. Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 4, 2, 2]
4-element Array{Int64,1}:
1
4
2
2
julia> findfirst(iseven, A)
2
julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL
julia> findfirst(equalto(4), A)
2
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findfirst(iseven, A)
CartesianIndex(2, 1)Base.findlast — Method.findlast(A)Return the index or key of the last true value in A. Return nothing if there is no true value in A.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [true, false, true, false]
4-element Array{Bool,1}:
true
false
true
false
julia> findlast(A)
3
julia> A = falses(2,2);
julia> findlast(A) # returns nothing, but not printed in the REPL
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> findlast(A)
CartesianIndex(2, 1)Base.findlast — Method.findlast(predicate::Function, A)Return the index or key of the last element of A for which predicate returns true. Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 2, 3, 4]
4-element Array{Int64,1}:
1
2
3
4
julia> findlast(isodd, A)
3
julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> findlast(isodd, A)
CartesianIndex(2, 1)Base.findnext — Method.findnext(A, i)Find the next index after or including i of a true element of A, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [false, false, true, false]
4-element Array{Bool,1}:
false
false
true
false
julia> findnext(A, 1)
3
julia> findnext(A, 4) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Array{Bool,2}:
false false
true false
julia> findnext(A, CartesianIndex(1, 1))
CartesianIndex(2, 1)Base.findnext — Method.findnext(predicate::Function, A, i)Find the next index after or including i of an element of A for which predicate returns true, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 4, 2, 2];
julia> findnext(isodd, A, 1)
1
julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL
julia> A = [1 4; 2 2];
julia> findnext(isodd, A, CartesianIndex(1, 1))
CartesianIndex(1, 1)Base.findprev — Method.findprev(A, i)Find the previous index before or including i of a true element of A, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [false, false, true, true]
4-element Array{Bool,1}:
false
false
true
true
julia> findprev(A, 3)
3
julia> findprev(A, 1) # returns nothing, but not printed in the REPL
julia> A = [false false; true true]
2×2 Array{Bool,2}:
false false
true true
julia> findprev(A, CartesianIndex(2, 1))
CartesianIndex(2, 1)Base.findprev — Method.findprev(predicate::Function, A, i)Find the previous index before or including i of an element of A for which predicate returns true, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [4, 6, 1, 2]
4-element Array{Int64,1}:
4
6
1
2
julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL
julia> findprev(isodd, A, 3)
3
julia> A = [4 6; 1 2]
2×2 Array{Int64,2}:
4 6
1 2
julia> findprev(isodd, A, CartesianIndex(1, 2))
CartesianIndex(2, 1)Base.permutedims — Function.permutedims(A::AbstractArray, perm)Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A).
See also: PermutedDimsArray.
Examples
julia> A = reshape(Vector(1:8), (2,2,2))
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 3
2 4
[:, :, 2] =
5 7
6 8
julia> permutedims(A, [3, 2, 1])
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 3
5 7
[:, :, 2] =
2 4
6 8permutedims(m::AbstractMatrix)Permute the dimensions of the matrix m, by flipping the elements across the diagonal of the matrix. Differs from LinearAlgebra's transpose in that the operation is not recursive.
Examples
julia> a = [1 2; 3 4];
julia> b = [5 6; 7 8];
julia> c = [9 10; 11 12];
julia> d = [13 14; 15 16];
julia> X = [[a] [b]; [c] [d]]
2×2 Array{Array{Int64,2},2}:
[1 2; 3 4] [5 6; 7 8]
[9 10; 11 12] [13 14; 15 16]
julia> permutedims(X)
2×2 Array{Array{Int64,2},2}:
[1 2; 3 4] [9 10; 11 12]
[5 6; 7 8] [13 14; 15 16]
julia> transpose(X)
2×2 Transpose{Transpose{Int64,Array{Int64,2}},Array{Array{Int64,2},2}}:
[1 3; 2 4] [9 11; 10 12]
[5 7; 6 8] [13 15; 14 16]permutedims(v::AbstractVector)Reshape vector v into a 1 × length(v) row matrix. Differs from LinearAlgebra's transpose in that the operation is not recursive.
Examples
julia> permutedims([1, 2, 3, 4])
1×4 Array{Int64,2}:
1 2 3 4
julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]
2-element Array{Array{Int64,2},1}:
[1 2; 3 4]
[5 6; 7 8]
julia> permutedims(V)
1×2 Array{Array{Int64,2},2}:
[1 2; 3 4] [5 6; 7 8]
julia> transpose(V)
1×2 Transpose{Transpose{Int64,Array{Int64,2}},Array{Array{Int64,2},1}}:
[1 3; 2 4] [5 7; 6 8]Base.permutedims! — Function.permutedims!(dest, src, perm)Permute the dimensions of array src and store the result in the array dest. perm is a vector specifying a permutation of length ndims(src). The preallocated array dest should have size(dest) == size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected results will happen if src and dest have overlapping memory regions.
See also permutedims.
PermutedDimsArray(A, perm) -> BGiven an AbstractArray A, create a view B such that the dimensions appear to be permuted. Similar to permutedims, except that no copying occurs (B shares storage with A).
See also: permutedims.
Examples
julia> A = rand(3,5,4);
julia> B = PermutedDimsArray(A, (3,1,2));
julia> size(B)
(4, 3, 5)
julia> B[3,1,2] == A[1,2,3]
trueBase.promote_shape — Function.promote_shape(s1, s2)Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
julia> a = fill(1, (3,4,1,1,1));
julia> b = fill(1, (3,4));
julia> promote_shape(a,b)
(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))
julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))
(2, 3, 1, 4, 1)Array functions
Base.accumulate — Function.accumulate(op, A; dims::Integer)Cumulative operation op along the dimension dims. See also accumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common operations there are specialized variants of accumulate, see: cumsum, cumprod
Examples
julia> accumulate(+, fill(1, 3, 3), dims=1)
3×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
julia> accumulate(+, fill(1, 3, 3), dims=2)
3×3 Array{Int64,2}:
1 2 3
1 2 3
1 2 3accumulate(op, x::AbstractVector)Cumulative operation op on a vector. See also accumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common operations there are specialized variants of accumulate, see: cumsum, cumprod
Examples
julia> accumulate(+, [1,2,3])
3-element Array{Int64,1}:
1
3
6
julia> accumulate(*, [1,2,3])
3-element Array{Int64,1}:
1
2
6accumulate(op, v0, x::AbstractVector)Like accumulate, but using a starting element v0. The first entry of the result will be op(v0, first(A)).
Examples
julia> accumulate(+, 100, [1,2,3])
3-element Array{Int64,1}:
101
103
106
julia> accumulate(min, 0, [1,2,-1])
3-element Array{Int64,1}:
0
0
-1Base.accumulate! — Function.accumulate!(op, B, A; dims::Integer)Cumulative operation op on A along the dimension dims, storing the result in B. See also accumulate.
Examples
julia> A = [1 2; 3 4];
julia> B = [0 0; 0 0];
julia> accumulate!(-, B, A, dims=1);
julia> B
2×2 Array{Int64,2}:
1 2
-2 -2
julia> accumulate!(-, B, A, dims=2);
julia> B
2×2 Array{Int64,2}:
1 -1
3 -1accumulate!(op, y, x::AbstractVector)Cumulative operation op on a vector x, storing the result in y. See also accumulate.
Examples
``jldoctest julia> x = [1, 0, 2, 0, 3];
julia> y = [0, 0, 0, 0, 0];
julia> accumulate!(+, y, x);
julia> y 5-element Array{Int64,1}: 1 1 3 3 6 ```
Base.cumprod — Function.cumprod(A; dims::Integer)Cumulative product along the dimension dim. See also cumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumprod(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
4 10 18
julia> cumprod(a, dims=2)
2×3 Array{Int64,2}:
1 2 6
4 20 120cumprod(x::AbstractVector)Cumulative product of a vector. See also cumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> cumprod(fill(1//2, 3))
3-element Array{Rational{Int64},1}:
1//2
1//4
1//8
julia> cumprod([fill(1//3, 2, 2) for i in 1:3])
3-element Array{Array{Rational{Int64},2},1}:
[1//3 1//3; 1//3 1//3]
[2//9 2//9; 2//9 2//9]
[4//27 4//27; 4//27 4//27]Base.cumprod! — Function.cumprod!(B, A; dims::Integer)Cumulative product of A along the dimension dims, storing the result in B. See also cumprod.
cumprod!(y::AbstractVector, x::AbstractVector)Cumulative product of a vector x, storing the result in y. See also cumprod.
Base.cumsum — Function.cumsum(A; dims::Integer)Cumulative sum along the dimension dims. See also cumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumsum(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
5 7 9
julia> cumsum(a, dims=2)
2×3 Array{Int64,2}:
1 3 6
4 9 15cumsum(x::AbstractVector)Cumulative sum a vector. See also cumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> cumsum([1, 1, 1])
3-element Array{Int64,1}:
1
2
3
julia> cumsum([fill(1, 2) for i in 1:3])
3-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
[3, 3]Base.cumsum! — Function.cumsum!(B, A; dims::Integer)Cumulative sum of A along the dimension dims, storing the result in B. See also cumsum.
Base.diff — Function.diff(A::AbstractVector)
diff(A::AbstractMatrix, dim::Integer)Finite difference operator of matrix or vector A. If A is a matrix, specify the dimension over which to operate with the dim argument.
Examples
julia> a = [2 4; 6 16]
2×2 Array{Int64,2}:
2 4
6 16
julia> diff(a,2)
2×1 Array{Int64,2}:
2
10
julia> diff(vec(a))
3-element Array{Int64,1}:
4
-2
12Base.repeat — Function.repeat(A::AbstractArray, counts::Integer...)Construct an array by repeating array A a given number of times in each dimension, specified by counts.
Examples
julia> repeat([1, 2, 3], 2)
6-element Array{Int64,1}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))Construct an array by repeating the entries of A. The i-th element of inner specifies the number of times that the individual entries of the i-th dimension of A should be repeated. The i-th element of outer specifies the number of times that a slice along the i-th dimension of A should be repeated. If inner or outer are omitted, no repetition is performed.
Examples
julia> repeat(1:2, inner=2)
4-element Array{Int64,1}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Array{Int64,1}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Array{Int64,2}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4repeat(s::AbstractString, r::Integer)Repeat a string r times. This can be written as s^r.
See also: ^
Examples
julia> repeat("ha", 3)
"hahaha"repeat(c::AbstractChar, r::Integer) -> StringRepeat a character r times. This can equivalently be accomplished by calling c^r.
Examples
julia> repeat('A', 3)
"AAA"Base.rot180 — Function.rot180(A)Rotate matrix A 180 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a)
2×2 Array{Int64,2}:
4 3
2 1rot180(A, k)Rotate matrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a,1)
2×2 Array{Int64,2}:
4 3
2 1
julia> rot180(a,2)
2×2 Array{Int64,2}:
1 2
3 4Base.rotl90 — Function.rotl90(A)Rotate matrix A left 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a)
2×2 Array{Int64,2}:
2 4
1 3rotl90(A, k)Rotate matrix A left 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a,1)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotl90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotl90(a,3)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotl90(a,4)
2×2 Array{Int64,2}:
1 2
3 4Base.rotr90 — Function.rotr90(A)Rotate matrix A right 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a)
2×2 Array{Int64,2}:
3 1
4 2rotr90(A, k)Rotate matrix A right 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a,1)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotr90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotr90(a,3)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotr90(a,4)
2×2 Array{Int64,2}:
1 2
3 4Base.mapslices — Function.mapslices(f, A, dims)Transform the given dimensions of array A using function f. f is called on each slice of A of the form A[...,:,...,:,...]. dims is an integer vector specifying where the colons go in this expression. The results are concatenated along the remaining dimensions. For example, if dims is [1,2] and A is 4-dimensional, f is called on A[:,:,i,j] for all i and j.
Examples
julia> a = reshape(Vector(1:16),(2,2,2,2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> mapslices(sum, a, [1,2])
1×1×2×2 Array{Int64,4}:
[:, :, 1, 1] =
10
[:, :, 2, 1] =
26
[:, :, 1, 2] =
42
[:, :, 2, 2] =
58Combinatorics
Base.invperm — Function.invperm(v)Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].
Examples
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Array{Int64,1}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Array{Char,1}:
'b'
'd'
'c'
'a'
julia> B[invperm(v)]
4-element Array{Char,1}:
'a'
'b'
'c'
'd'Base.isperm — Function.isperm(v) -> BoolReturn true if v is a valid permutation.
Examples
julia> isperm([1; 2])
true
julia> isperm([1; 3])
falseBase.permute! — Method.permute!(v, p)Permute vector v in-place, according to permutation p. No checking is done to verify that p is a permutation.
To return a new permutation, use v[p]. Note that this is generally faster than permute!(v,p) for large vectors.
See also invpermute!.
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Array{Int64,1}:
1
4
3
1Base.invpermute! — Function.invpermute!(v, p)Like permute!, but the inverse of the given permutation is applied.
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> invpermute!(A, perm);
julia> A
4-element Array{Int64,1}:
4
1
3
1Base.reverse — Function.reverse(v [, start=1 [, stop=length(v) ]] )Return a copy of v reversed from start to stop. See also Iterators.reverse for reverse-order iteration without making a copy.
Examples
julia> A = Vector(1:5)
5-element Array{Int64,1}:
1
2
3
4
5
julia> reverse(A)
5-element Array{Int64,1}:
5
4
3
2
1
julia> reverse(A, 1, 4)
5-element Array{Int64,1}:
4
3
2
1
5
julia> reverse(A, 3, 5)
5-element Array{Int64,1}:
1
2
5
4
3reverse(A; dims::Integer)Reverse A in dimension dims.
Examples
julia> b = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> reverse(b, dims=2)
2×2 Array{Int64,2}:
2 1
4 3reverse(s::AbstractString) -> AbstractStringReverses a string. Technically, this function reverses the codepoints in a string and its main utility is for reversed-order string processing, especially for reversed regular-expression searches. See also reverseind to convert indices in s to indices in reverse(s) and vice-versa, and graphemes from module Unicode to operate on user-visible "characters" (graphemes) rather than codepoints. See also Iterators.reverse for reverse-order iteration without making a copy. Custom string types must implement the reverse function themselves and should typically return a string with the same type and encoding. If they return a string with a different encoding, they must also override reverseind for that string type to satisfy s[reverseind(s,i)] == reverse(s)[i].
Examples
julia> reverse("JuliaLang")
"gnaLailuJ"
julia> reverse("ax̂e") # combining characters can lead to surprising results
"êxa"
julia> using Unicode
julia> join(reverse(collect(graphemes("ax̂e")))) # reverses graphemes
"ex̂a"Base.reverseind — Function.reverseind(v, i)Given an index i in reverse(v), return the corresponding index in v so that v[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in cases where v contains non-ASCII characters.)
Examples
julia> r = reverse("Julia")
"ailuJ"
julia> for i in 1:length(r)
print(r[reverseind("Julia", i)])
end
JuliaBase.reverse! — Function.reverse!(v [, start=1 [, stop=length(v) ]]) -> vIn-place version of reverse.
Examples
julia> A = Vector(1:5)
5-element Array{Int64,1}:
1
2
3
4
5
julia> reverse!(A);
julia> A
5-element Array{Int64,1}:
5
4
3
2
1BitArrays
BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can be used similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted to/from the latter via Array(bitarray) and BitArray(array), respectively.
Base.flipbits! — Function.flipbits!(B::BitArray{N}) -> BitArray{N}Performs a bitwise not operation on B. See ~.
Examples
julia> A = trues(2,2)
2×2 BitArray{2}:
true true
true true
julia> flipbits!(A)
2×2 BitArray{2}:
false false
false false