Collections and Data Structures
Iteration
Sequential iteration is implemented by the methods start, done, and next. The general for loop:
for i = I # or "for i in I"
# body
endis translated into:
state = start(I)
while !done(I, state)
(i, state) = next(I, state)
# body
endThe state object may be anything, and should be chosen appropriately for each iterable type. See the manual section on the iteration interface for more details about defining a custom iterable type.
Base.start — Function.start(iter) -> stateGet initial iteration state for an iterable object.
Examples
julia> start(1:5)
1
julia> start([1;2;3])
1
julia> start([4;2;3])
1Base.done — Function.done(iter, state) -> BoolTest whether we are done iterating.
Examples
julia> done(1:5, 3)
false
julia> done(1:5, 5)
false
julia> done(1:5, 6)
trueBase.next — Function.next(iter, state) -> item, stateFor a given iterable object and iteration state, return the current item and the next iteration state.
Examples
julia> next(1:5, 3)
(3, 4)
julia> next(1:5, 5)
(5, 6)Base.IteratorSize — Type.IteratorSize(itertype::Type) -> IteratorSizeGiven the type of an iterator, return one of the following values:
SizeUnknown()if the length (number of elements) cannot be determined in advance.HasLength()if there is a fixed, finite length.HasShape{N}()if there is a known length plus a notion of multidimensional shape (as for an array). In this caseNshould give the number of dimensions, and theaxesfunction is valid for the iterator.IsInfinite()if the iterator yields values forever.
The default value (for iterators that do not define this function) is HasLength(). This means that most iterators are assumed to implement length.
This trait is generally used to select between algorithms that pre-allocate space for their result, and algorithms that resize their result incrementally.
julia> Base.IteratorSize(1:5)
Base.HasShape{1}()
julia> Base.IteratorSize((2,3))
Base.HasLength()Base.IteratorEltype — Type.IteratorEltype(itertype::Type) -> IteratorEltypeGiven the type of an iterator, return one of the following values:
EltypeUnknown()if the type of elements yielded by the iterator is not known in advance.HasEltype()if the element type is known, andeltypewould return a meaningful value.
HasEltype() is the default, since iterators are assumed to implement eltype.
This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms that pick a result type based on the types of yielded values.
julia> Base.IteratorEltype(1:5)
Base.HasEltype()Fully implemented by:
AbstractRangeUnitRangeTupleNumberEachLineAbstractString
General Collections
Base.isempty — Function.isempty(collection) -> BoolDetermine whether a collection is empty (has no elements).
Examples
julia> isempty([])
true
julia> isempty([1 2 3])
falseBase.empty! — Function.empty!(collection) -> collectionRemove all elements from a collection.
julia> A = Dict("a" => 1, "b" => 2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> empty!(A);
julia> A
Dict{String,Int64} with 0 entriesBase.length — Function.length(collection) -> IntegerReturn the number of elements in the collection.
Use lastindex to get the last valid index of an indexable collection.
Examples
julia> length(1:5)
5
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4length(s::AbstractString) -> Int
length(s::AbstractString, i::Integer, j::Integer) -> IntThe number of characters in string s from indices i through j. This is computed as the number of code unit indices from i to j which are valid character indices. Without only a single string argument, this computes the number of characters in the entire string. With i and j arguments it computes the number of indices between i and j inclusive that are valid indices in the string s. In addition to in-bounds values, i may take the out-of-bounds value ncodeunits(s) + 1 and j may take the out-of-bounds value 0.
See also: isvalid, ncodeunits, lastindex, thisind, nextind, prevind
Examples
julia> length("jμΛIα")
5Fully implemented by:
AbstractRangeUnitRangeTupleNumberAbstractString
Iterable Collections
Base.in — Function.in(item, collection) -> Bool
∈(item,collection) -> Bool
∋(collection,item) -> Bool
∉(item,collection) -> Bool
∌(collection,item) -> BoolDetermine whether an item is in the given collection, in the sense that it is == to one of the values generated by iterating over the collection. Returns a Bool value, except if item is missing or collection contains missing but not item, in which case missing is returned (three-valued logic, matching the behavior of any and ==).
Some collections follow a slightly different definition. For example, Sets check whether the item isequal to one of the elements. Dicts look for key=>value pairs, and the key is compared using isequal. To test for the presence of a key in a dictionary, use haskey or k in keys(dict). For these collections, the result is always a Bool and never missing.
julia> a = 1:3:20
1:3:19
julia> 4 in a
true
julia> 5 in a
false
julia> missing in [1, 2]
missing
julia> 1 in [2, missing]
missing
julia> 1 in [1, missing]
true
julia> missing in Set([1, 2])
falseBase.eltype — Function.eltype(type)Determine the type of the elements generated by iterating a collection of the given type. For dictionary types, this will be a Pair{KeyType,ValType}. The definition eltype(x) = eltype(typeof(x)) is provided for convenience so that instances can be passed instead of types. However the form that accepts a type argument should be defined for new types.
Examples
julia> eltype(fill(1f0, (2,2)))
Float32
julia> eltype(fill(0x1, (2,2)))
UInt8Base.indexin — Function.indexin(a, b)Return an array containing the first index in b for each value in a that is a member of b. The output array contains nothing wherever a is not a member of b.
Examples
julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];
julia> b = ['a', 'b', 'c'];
julia> indexin(a, b)
6-element Array{Union{Nothing, Int64},1}:
1
2
3
2
nothing
1
julia> indexin(b, a)
3-element Array{Union{Nothing, Int64},1}:
1
2
3Base.unique — Function.unique(itr)Return an array containing only the unique elements of collection itr, as determined by isequal, in the order that the first of each set of equivalent elements originally appears. The element type of the input is preserved.
Examples
julia> unique([1, 2, 6, 2])
3-element Array{Int64,1}:
1
2
6
julia> unique(Real[1, 1.0, 2])
2-element Array{Real,1}:
1
2unique(f, itr)Returns an array containing one value from itr for each unique value produced by f applied to elements of itr.
Examples
julia> unique(x -> x^2, [1, -1, 3, -3, 4])
3-element Array{Int64,1}:
1
3
4unique(A::AbstractArray, dim::Int)Return unique regions of A along dimension dim.
Examples
julia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))
2×2×2 Array{Bool,3}:
[:, :, 1] =
true true
false false
[:, :, 2] =
true true
false false
julia> unique(A)
2-element Array{Bool,1}:
true
false
julia> unique(A, 2)
2×1×2 Array{Bool,3}:
[:, :, 1] =
true
false
[:, :, 2] =
true
false
julia> unique(A, 3)
2×2×1 Array{Bool,3}:
[:, :, 1] =
true true
false falseBase.unique! — Function.unique!(A::AbstractVector)Remove duplicate items as determined by isequal, then return the modified A. unique! will return the elements of A in the order that they occur. If you do not care about the order of the returned data, then calling (sort!(A); unique!(A)) will be much more efficient as long as the elements of A can be sorted.
Examples
julia> unique!([1, 1, 1])
1-element Array{Int64,1}:
1
julia> A = [7, 3, 2, 3, 7, 5];
julia> unique!(A)
4-element Array{Int64,1}:
7
3
2
5
julia> B = [7, 6, 42, 6, 7, 42];
julia> sort!(B); # unique! is able to process sorted data much more efficiently.
julia> unique!(B)
3-element Array{Int64,1}:
6
7
42Base.allunique — Function.allunique(itr) -> BoolReturn true if all values from itr are distinct when compared with isequal.
Examples
julia> a = [1; 2; 3]
3-element Array{Int64,1}:
1
2
3
julia> allunique([a, a])
falseBase.reduce — Method.reduce(op, v0, itr)Reduce the given collection itr with the given binary operator op. v0 must be a neutral element for op that will be returned for empty collections. It is unspecified whether v0 is used for non-empty collections.
Reductions for certain commonly-used operators may have special implementations, and should be used instead: maximum(itr), minimum(itr), sum(itr), prod(itr), any(itr), all(itr).
The associativity of the reduction is implementation dependent. This means that you can't use non-associative operations like - because it is undefined whether reduce(-,[1,2,3]) should be evaluated as (1-2)-3 or 1-(2-3). Use foldl or foldr instead for guaranteed left or right associativity.
Some operations accumulate error. Parallelism will be easier if the reduction can be executed in groups. Future versions of Julia might change the algorithm. Note that the elements are not reordered if you use an ordered collection.
Examples
julia> reduce(*, 1, [2; 3; 4])
24Base.reduce — Method.reduce(op, itr)Like reduce(op, v0, itr). This cannot be used with empty collections, except for some special cases (e.g. when op is one of +, *, max, min, &, |) when Julia can determine the neutral element of op.
julia> reduce(*, [2; 3; 4])
24Base.foldl — Method.foldl(op, v0, itr)Like reduce, but with guaranteed left associativity. v0 will be used exactly once.
julia> foldl(=>, 0, 1:4)
(((0=>1)=>2)=>3) => 4Base.foldl — Method.foldl(op, itr)Like foldl(op, v0, itr), but using the first element of itr as v0. In general, this cannot be used with empty collections (see reduce(op, itr)).
julia> foldl(=>, 1:4)
((1=>2)=>3) => 4Base.foldr — Method.foldr(op, v0, itr)Like reduce, but with guaranteed right associativity. v0 will be used exactly once.
julia> foldr(=>, 0, 1:4)
1 => (2=>(3=>(4=>0)))Base.foldr — Method.foldr(op, itr)Like foldr(op, v0, itr), but using the last element of itr as v0. In general, this cannot be used with empty collections (see reduce(op, itr)).
julia> foldr(=>, 1:4)
1 => (2=>(3=>4))Base.maximum — Function.maximum(itr)Returns the largest element in a collection.
julia> maximum(-20.5:10)
9.5
julia> maximum([1,2,3])
3maximum(A::AbstractArray; dims)Compute the maximum value of an array over the given dimensions. See also the max(a,b) function to take the maximum of two or more arguments, which can be applied elementwise to arrays via max.(a,b).
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum(A, dims=1)
1×2 Array{Int64,2}:
3 4
julia> maximum(A, dims=2)
2×1 Array{Int64,2}:
2
4Base.maximum! — Function.maximum!(r, A)Compute the maximum value of A over the singleton dimensions of r, and write results to r.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum!([1; 1], A)
2-element Array{Int64,1}:
2
4
julia> maximum!([1 1], A)
1×2 Array{Int64,2}:
3 4Base.minimum — Function.minimum(itr)Returns the smallest element in a collection.
julia> minimum(-20.5:10)
-20.5
julia> minimum([1,2,3])
1minimum(A::AbstractArray; dims)Compute the minimum value of an array over the given dimensions. See also the min(a,b) function to take the minimum of two or more arguments, which can be applied elementwise to arrays via min.(a,b).
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum(A, dims=1)
1×2 Array{Int64,2}:
1 2
julia> minimum(A, dims=2)
2×1 Array{Int64,2}:
1
3Base.minimum! — Function.minimum!(r, A)Compute the minimum value of A over the singleton dimensions of r, and write results to r.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum!([1; 1], A)
2-element Array{Int64,1}:
1
3
julia> minimum!([1 1], A)
1×2 Array{Int64,2}:
1 2Base.extrema — Method.extrema(itr) -> TupleCompute both the minimum and maximum element in a single pass, and return them as a 2-tuple.
julia> extrema(2:10)
(2, 10)
julia> extrema([9,pi,4.5])
(3.141592653589793, 9.0)Base.extrema — Method.extrema(A, dims) -> Array{Tuple}Compute the minimum and maximum elements of an array over the given dimensions.
Examples
julia> A = reshape(Vector(1:2:16), (2,2,2))
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 5
3 7
[:, :, 2] =
9 13
11 15
julia> extrema(A, (1,2))
1×1×2 Array{Tuple{Int64,Int64},3}:
[:, :, 1] =
(1, 7)
[:, :, 2] =
(9, 15)Base.argmax — Function.argmax(itr) -> IntegerReturn the index of the maximum element in a collection. If there are multiple maximal elements, then the first one will be returned.
The collection must not be empty.
Examples
julia> argmax([8,0.1,-9,pi])
1
julia> argmax([1,7,7,6])
2
julia> argmax([1,7,7,NaN])
4Base.argmin — Function.argmin(itr) -> IntegerReturn the index of the minimum element in a collection. If there are multiple minimal elements, then the first one will be returned.
The collection must not be empty.
Examples
julia> argmin([8,0.1,-9,pi])
3
julia> argmin([7,1,1,6])
2
julia> argmin([7,1,1,NaN])
4Base.findmax — Function.findmax(itr) -> (x, index)Return the maximum element of the collection itr and its index. If there are multiple maximal elements, then the first one will be returned. If any data element is NaN, this element is returned. The result is in line with max.
The collection must not be empty.
Examples
julia> findmax([8,0.1,-9,pi])
(8.0, 1)
julia> findmax([1,7,7,6])
(7, 2)
julia> findmax([1,7,7,NaN])
(NaN, 4)findmax(A; dims) -> (maxval, index)For an array input, returns the value and index of the maximum over the given dimensions. NaN is treated as greater than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmax(A, dims=1)
([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])
julia> findmax(A, dims=2)
([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])Base.findmin — Function.findmin(itr) -> (x, index)Return the minimum element of the collection itr and its index. If there are multiple minimal elements, then the first one will be returned. If any data element is NaN, this element is returned. The result is in line with min.
The collection must not be empty.
Examples
julia> findmin([8,0.1,-9,pi])
(-9.0, 3)
julia> findmin([7,1,1,6])
(1, 2)
julia> findmin([7,1,1,NaN])
(NaN, 4)findmin(A; dims) -> (minval, index)For an array input, returns the value and index of the minimum over the given dimensions. NaN is treated as less than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmin(A, dims=1)
([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])
julia> findmin(A, dims=2)
([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])Base.findmax! — Function.findmax!(rval, rind, A) -> (maxval, index)Find the maximum of A and the corresponding linear index along singleton dimensions of rval and rind, and store the results in rval and rind. NaN is treated as greater than all other values.
Base.findmin! — Function.findmin!(rval, rind, A) -> (minval, index)Find the minimum of A and the corresponding linear index along singleton dimensions of rval and rind, and store the results in rval and rind. NaN is treated as less than all other values.
Base.sum — Function.sum(f, itr)Sum the results of calling function f on each element of itr.
The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
julia> sum(abs2, [2; 3; 4])
29Note the important difference between sum(A) and reduce(+, A) for arrays with small integer eltype:
julia> sum(Int8[100, 28])
128
julia> reduce(+, Int8[100, 28])
-128In the former case, the integers are widened to system word size and therefore the result is 128. In the latter case, no such widening happens and integer overflow results in -128.
sum(itr)Returns the sum of all elements in a collection.
The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
julia> sum(1:20)
210sum(A::AbstractArray; dims)Sum elements of an array over the given dimensions.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum(A, dims=1)
1×2 Array{Int64,2}:
4 6
julia> sum(A, dims=2)
2×1 Array{Int64,2}:
3
7Base.sum! — Function.sum!(r, A)Sum elements of A over the singleton dimensions of r, and write results to r.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum!([1; 1], A)
2-element Array{Int64,1}:
3
7
julia> sum!([1 1], A)
1×2 Array{Int64,2}:
4 6Base.prod — Function.prod(f, itr)Returns the product of f applied to each element of itr.
The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
julia> prod(abs2, [2; 3; 4])
576prod(itr)Returns the product of all elements of a collection.
The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
julia> prod(1:20)
2432902008176640000prod(A::AbstractArray; dims)Multiply elements of an array over the given dimensions.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod(A, dims=1)
1×2 Array{Int64,2}:
3 8
julia> prod(A, dims=2)
2×1 Array{Int64,2}:
2
12Base.prod! — Function.prod!(r, A)Multiply elements of A over the singleton dimensions of r, and write results to r.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod!([1; 1], A)
2-element Array{Int64,1}:
2
12
julia> prod!([1 1], A)
1×2 Array{Int64,2}:
3 8Base.any — Method.any(itr) -> BoolTest whether any elements of a boolean collection are true, returning true as soon as the first true value in itr is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are false (or equivalently, if the input contains no true value), following three-valued logic.
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
true
false
false
true
julia> any(a)
true
julia> any((println(i); v) for (i, v) in enumerate(a))
1
true
julia> any([missing, true])
true
julia> any([false, missing])
missingBase.any — Method.any(p, itr) -> BoolDetermine whether predicate p returns true for any elements of itr, returning true as soon as the first item in itr for which p returns true is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are false (or equivalently, if the input contains no true value), following three-valued logic.
julia> any(i->(4<=i<=6), [3,5,7])
true
julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true
julia> any(i -> i > 0, [1, missing])
true
julia> any(i -> i > 0, [-1, missing])
missing
julia> any(i -> i > 0, [-1, 0])
falseBase.any! — Function.any!(r, A)Test whether any values in A along the singleton dimensions of r are true, and write results to r.
Examples
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> any!([1; 1], A)
2-element Array{Int64,1}:
1
1
julia> any!([1 1], A)
1×2 Array{Int64,2}:
1 0Base.all — Method.all(itr) -> BoolTest whether all elements of a boolean collection are true, returning false as soon as the first false value in itr is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are true (or equivalently, if the input contains no false value), following three-valued logic.
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
true
false
false
true
julia> all(a)
false
julia> all((println(i); v) for (i, v) in enumerate(a))
1
2
false
julia> all([missing, false])
false
julia> all([true, missing])
missingBase.all — Method.all(p, itr) -> BoolDetermine whether predicate p returns true for all elements of itr, returning false as soon as the first item in itr for which p returns false is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are true (or equivalently, if the input contains no false value), following three-valued logic.
julia> all(i->(4<=i<=6), [4,5,6])
true
julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false
julia> all(i -> i > 0, [1, missing])
missing
julia> all(i -> i > 0, [-1, missing])
false
julia> all(i -> i > 0, [1, 2])
trueBase.all! — Function.all!(r, A)Test whether all values in A along the singleton dimensions of r are true, and write results to r.
Examples
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> all!([1; 1], A)
2-element Array{Int64,1}:
0
0
julia> all!([1 1], A)
1×2 Array{Int64,2}:
1 0Base.count — Function.count(p, itr) -> Integer
count(itr) -> IntegerCount the number of elements in itr for which predicate p returns true. If p is omitted, counts the number of true elements in itr (which should be a collection of boolean values).
julia> count(i->(4<=i<=6), [2,3,4,5,6])
3
julia> count([true, false, true, true])
3Base.any — Method.any(p, itr) -> BoolDetermine whether predicate p returns true for any elements of itr, returning true as soon as the first item in itr for which p returns true is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are false (or equivalently, if the input contains no true value), following three-valued logic.
julia> any(i->(4<=i<=6), [3,5,7])
true
julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true
julia> any(i -> i > 0, [1, missing])
true
julia> any(i -> i > 0, [-1, missing])
missing
julia> any(i -> i > 0, [-1, 0])
falseBase.all — Method.all(p, itr) -> BoolDetermine whether predicate p returns true for all elements of itr, returning false as soon as the first item in itr for which p returns false is encountered (short-circuiting).
If the input contains missing values, return missing if all non-missing values are true (or equivalently, if the input contains no false value), following three-valued logic.
julia> all(i->(4<=i<=6), [4,5,6])
true
julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false
julia> all(i -> i > 0, [1, missing])
missing
julia> all(i -> i > 0, [-1, missing])
false
julia> all(i -> i > 0, [1, 2])
trueBase.foreach — Function.foreach(f, c...) -> NothingCall function f on each element of iterable c. For multiple iterable arguments, f is called elementwise. foreach should be used instead of map when the results of f are not needed, for example in foreach(println, array).
Examples
julia> a = 1:3:7;
julia> foreach(x -> println(x^2), a)
1
16
49Base.map — Function.map(f, c...) -> collectionTransform collection c by applying f to each element. For multiple collection arguments, apply f elementwise.
See also: mapslices
Examples
julia> map(x -> x * 2, [1, 2, 3])
3-element Array{Int64,1}:
2
4
6
julia> map(+, [1, 2, 3], [10, 20, 30])
3-element Array{Int64,1}:
11
22
33Base.map! — Function.map!(function, destination, collection...)Like map, but stores the result in destination rather than a new collection. destination must be at least as large as the first collection.
Examples
julia> x = zeros(3);
julia> map!(x -> x * 2, x, [1, 2, 3]);
julia> x
3-element Array{Float64,1}:
2.0
4.0
6.0Base.mapreduce — Method.mapreduce(f, op, v0, itr)Apply function f to each element in itr, and then reduce the result using the binary function op. v0 must be a neutral element for op that will be returned for empty collections. It is unspecified whether v0 is used for non-empty collections.
mapreduce is functionally equivalent to calling reduce(op, v0, map(f, itr)), but will in general execute faster since no intermediate collection needs to be created. See documentation for reduce and map.
julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9
14The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse the return value of f for elements that appear multiple times in itr. Use mapfoldl or mapfoldr instead for guaranteed left or right associativity and invocation of f for every value.
Base.mapreduce — Method.mapreduce(f, op, itr)Like mapreduce(f, op, v0, itr). In general, this cannot be used with empty collections (see reduce(op, itr)).
Base.mapfoldl — Method.Base.mapfoldl — Method.mapfoldl(f, op, itr)Like mapfoldl(f, op, v0, itr), but using the first element of itr to generate v0. Specifically, mapfoldl(f, op, itr) produces the same result as mapfoldl(f, op, f(first(itr)), drop(itr, 1)). In general, this cannot be used with empty collections (see reduce(op, itr)).
Base.mapfoldr — Method.Base.mapfoldr — Method.mapfoldr(f, op, itr)Like mapfoldr(f, op, v0, itr), but using the first element of itr to generate v0. Specifically, mapfoldr(f, op, itr) produces the same result as mapfoldr(f, op, f(last(itr)), take(itr, length(itr)-1)). In general, this cannot be used with empty collections (see reduce(op, itr)).
Base.first — Function.first(coll)Get the first element of an iterable collection. Return the start point of an AbstractRange even if it is empty.
Examples
julia> first(2:2:10)
2
julia> first([1; 2; 3; 4])
1first(s::AbstractString, n::Integer)Get a string consisting of the first n characters of s.
julia> first("∀ϵ≠0: ϵ²>0", 0)
""
julia> first("∀ϵ≠0: ϵ²>0", 1)
"∀"
julia> first("∀ϵ≠0: ϵ²>0", 3)
"∀ϵ≠"Base.last — Function.last(coll)Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling lastindex to get the last index. Return the end point of an AbstractRange even if it is empty.
Examples
julia> last(1:2:10)
9
julia> last([1; 2; 3; 4])
4last(s::AbstractString, n::Integer)Get a string consisting of the last n characters of s.
julia> last("∀ϵ≠0: ϵ²>0", 0)
""
julia> last("∀ϵ≠0: ϵ²>0", 1)
"0"
julia> last("∀ϵ≠0: ϵ²>0", 3)
"²>0"Base.step — Function.step(r)Get the step size of an AbstractRange object.
julia> step(1:10)
1
julia> step(1:2:10)
2
julia> step(2.5:0.3:10.9)
0.3
julia> step(range(2.5, stop=10.9, length=85))
0.1Base.collect — Method.collect(collection)Return an Array of all items in a collection or iterator. For dictionaries, returns Pair{KeyType, ValType}. If the argument is array-like or is an iterator with the HasShape trait, the result will have the same shape and number of dimensions as the argument.
Examples
julia> collect(1:2:13)
7-element Array{Int64,1}:
1
3
5
7
9
11
13Base.collect — Method.collect(element_type, collection)Return an Array with the given element type of all items in a collection or iterable. The result has the same shape and number of dimensions as collection.
Examples
julia> collect(Float64, 1:2:5)
3-element Array{Float64,1}:
1.0
3.0
5.0Base.issubset — Method.issubset(a, b)
⊆(a,b) -> Bool
⊈(a,b) -> Bool
⊊(a,b) -> BoolDetermine whether every element of a is also in b, using in.
Examples
julia> issubset([1, 2], [1, 2, 3])
true
julia> issubset([1, 2, 3], [1, 2])
falseBase.filter — Function.filter(f, a::AbstractArray)Return a copy of a, removing elements for which f is false. The function f is passed one argument.
Examples
julia> a = 1:10
1:10
julia> filter(isodd, a)
5-element Array{Int64,1}:
1
3
5
7
9filter(f, d::AbstractDict)Return a copy of d, removing elements for which f is false. The function f is passed key=>value pairs.
Examples
julia> d = Dict(1=>"a", 2=>"b")
Dict{Int64,String} with 2 entries:
2 => "b"
1 => "a"
julia> filter(p->isodd(p.first), d)
Dict{Int64,String} with 1 entry:
1 => "a"Base.filter! — Function.filter!(f, a::AbstractVector)Update a, removing elements for which f is false. The function f is passed one argument.
Examples
julia> filter!(isodd, Vector(1:10))
5-element Array{Int64,1}:
1
3
5
7
9filter!(f, d::AbstractDict)Update d, removing elements for which f is false. The function f is passed key=>value pairs.
Example
julia> d = Dict(1=>"a", 2=>"b", 3=>"c")
Dict{Int64,String} with 3 entries:
2 => "b"
3 => "c"
1 => "a"
julia> filter!(p->isodd(p.first), d)
Dict{Int64,String} with 2 entries:
3 => "c"
1 => "a"Base.replace — Method.replace(A, old_new::Pair...; [count::Integer])Return a copy of collection A where, for each pair old=>new in old_new, all occurrences of old are replaced by new. Equality is determined using isequal. If count is specified, then replace at most count occurrences in total. See also replace!.
Examples
julia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Array{Int64,1}:
0
4
1
3Base.replace — Method.replace(pred::Function, A, new; [count::Integer])Return a copy of collection A where all occurrences x for which pred(x) is true are replaced by new. If count is specified, then replace at most count occurrences in total.
Examples
julia> replace(isodd, [1, 2, 3, 1], 0, count=2)
4-element Array{Int64,1}:
0
2
0
1Base.replace — Method.replace(new::Function, A; [count::Integer])Return a copy of A where each value x in A is replaced by new(x) If count is specified, then replace at most count values in total (replacements being defined as new(x) !== x).
Examples
julia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Array{Int64,1}:
2
2
6
4
julia> replace(Dict(1=>2, 3=>4)) do kv
first(kv) < 3 ? first(kv)=>3 : kv
end
Dict{Int64,Int64} with 2 entries:
3 => 4
1 => 3Base.replace! — Function.replace!(A, old_new::Pair...; [count::Integer])For each pair old=>new in old_new, replace all occurrences of old in collection A by new. Equality is determined using isequal. If count is specified, then replace at most count occurrences in total. See also replace.
Examples
julia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Array{Int64,1}:
0
4
1
3
julia> replace!(Set([1, 2, 3]), 1=>0)
Set([0, 2, 3])replace!(pred::Function, A, new; [count::Integer])Replace all occurrences x in collection A for which pred(x) is true by new.
Examples
julia> A = [1, 2, 3, 1];
julia> replace!(isodd, A, 0, count=2)
4-element Array{Int64,1}:
0
2
0
1replace!(new::Function, A; [count::Integer])Replace each element x in collection A by new(x). If count is specified, then replace at most count values in total (replacements being defined as new(x) !== x).
Examples
julia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Array{Int64,1}:
2
2
6
4
julia> replace!(Dict(1=>2, 3=>4)) do kv
first(kv) < 3 ? first(kv)=>3 : kv
end
Dict{Int64,Int64} with 2 entries:
3 => 4
1 => 3
julia> replace!(x->2x, Set([3, 6]))
Set([6, 12])Indexable Collections
Base.getindex — Function.getindex(collection, key...)Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...] is converted by the compiler to getindex(a, i, j, ...).
Examples
julia> A = Dict("a" => 1, "b" => 2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> getindex(A, "a")
1Base.setindex! — Function.setindex!(collection, value, key...)Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x is converted by the compiler to (setindex!(a, x, i, j, ...); x).
Base.firstindex — Function.firstindex(collection) -> Integer
firstindex(collection, d) -> IntegerReturn the first index of collection. If d is given, return the first index of collection along dimension d.
Examples
julia> firstindex([1,2,4])
1
julia> firstindex(rand(3,4,5), 2)
1Base.lastindex — Function.lastindex(collection) -> Integer
lastindex(collection, d) -> IntegerReturn the last index of collection. If d is given, return the last index of collection along dimension d.
The syntaxes A[end] and A[end, end] lower to A[lastindex(A)] and A[lastindex(A, 1), lastindex(A, 2)], respectively.
Examples
julia> lastindex([1,2,4])
3
julia> lastindex(rand(3,4,5), 2)
4Fully implemented by:
SubArray
Partially implemented by:
AbstractRangeUnitRangeTupleAbstractString
Dictionaries
Dict is the standard dictionary. Its implementation uses hash as the hashing function for the key, and isequal to determine equality. Define these two functions for custom types to override how they are stored in a hash table.
IdDict is a special hash table where the keys are always object identities.
WeakKeyDict is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.
Dicts can be created by passing pair objects constructed with => to a Dict constructor: Dict("A"=>1, "B"=>2). This call will attempt to infer type information from the keys and values (i.e. this example creates a Dict{String, Int64}). To explicitly specify types use the syntax Dict{KeyType,ValueType}(...). For example, Dict{String,Int32}("A"=>1, "B"=>2).
Dictionaries may also be created with generators. For example, Dict(i => f(i) for i = 1:10).
Given a dictionary D, the syntax D[x] returns the value of key x (if it exists) or throws an error, and D[x] = y stores the key-value pair x => y in D (replacing any existing value for the key x). Multiple arguments to D[...] are converted to tuples; for example, the syntax D[x,y] is equivalent to D[(x,y)], i.e. it refers to the value keyed by the tuple (x,y).
Base.Dict — Type.Dict([itr])Dict{K,V}() constructs a hash table with keys of type K and values of type V.
Given a single iterable argument, constructs a Dict whose key-value pairs are taken from 2-tuples (key,value) generated by the argument.
julia> Dict([("A", 1), ("B", 2)])
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1Alternatively, a sequence of pair arguments may be passed.
julia> Dict("A"=>1, "B"=>2)
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1Base.IdDict — Type.IdDict([itr])IdDict{K,V}() constructs a hash table using object-id as hash and === as equality with keys of type K and values of type V.
See Dict for further help.
Base.WeakKeyDict — Type.WeakKeyDict([itr])WeakKeyDict() constructs a hash table where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.
See Dict for further help.
Base.ImmutableDict — Type.ImmutableDictImmutableDict is a Dictionary implemented as an immutable linked list, which is optimal for small dictionaries that are constructed over many individual insertions Note that it is not possible to remove a value, although it can be partially overridden and hidden by inserting a new value with the same key
ImmutableDict(KV::Pair)Create a new entry in the Immutable Dictionary for the key => value pair
use
(key => value) in dictto see if this particular combination is in the properties setuse
get(dict, key, default)to retrieve the most recent value for a particular key
Base.haskey — Function.haskey(collection, key) -> BoolDetermine whether a collection has a mapping for a given key.
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> haskey(D, 'a')
true
julia> haskey(D, 'c')
falseBase.get — Method.get(collection, key, default)Return the value stored for the given key, or the given default value if no mapping for the key is present.
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> get(d, "a", 3)
1
julia> get(d, "c", 3)
3Base.get — Function.get(collection, key, default)Return the value stored for the given key, or the given default value if no mapping for the key is present.
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> get(d, "a", 3)
1
julia> get(d, "c", 3)
3get(f::Function, collection, key)Return the value stored for the given key, or if no mapping for the key is present, return f(). Use get! to also store the default value in the dictionary.
This is intended to be called using do block syntax
get(dict, key) do
# default value calculated here
time()
endBase.get! — Method.get!(collection, key, default)Return the value stored for the given key, or if no mapping for the key is present, store key => default, and return default.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> get!(d, "a", 5)
1
julia> get!(d, "d", 4)
4
julia> d
Dict{String,Int64} with 4 entries:
"c" => 3
"b" => 2
"a" => 1
"d" => 4Base.get! — Method.get!(f::Function, collection, key)Return the value stored for the given key, or if no mapping for the key is present, store key => f(), and return f().
This is intended to be called using do block syntax:
get!(dict, key) do
# default value calculated here
time()
endBase.getkey — Function.getkey(collection, key, default)Return the key matching argument key if one exists in collection, otherwise return default.
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> getkey(D, 'a', 1)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> getkey(D, 'd', 'a')
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)Base.delete! — Function.delete!(collection, key)Delete the mapping for the given key in a collection, and return the collection.
Examples
julia> d = Dict("a"=>1, "b"=>2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> delete!(d, "b")
Dict{String,Int64} with 1 entry:
"a" => 1Base.pop! — Method.pop!(collection, key[, default])Delete and return the mapping for key if it exists in collection, otherwise return default, or throw an error if default is not specified.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> pop!(d, "a")
1
julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]
julia> pop!(d, "e", 4)
4Base.keys — Function.keys(iterator)For an iterator or collection that has keys and values (e.g. arrays and dictionaries), return an iterator over the keys.
Base.values — Function.values(iterator)For an iterator or collection that has keys and values, return an iterator over the values. This function simply returns its argument by default, since the elements of a general iterator are normally considered its "values".
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> values(d)
Base.ValueIterator for a Dict{String,Int64} with 2 entries. Values:
2
1
julia> values([2])
1-element Array{Int64,1}:
2values(a::AbstractDict)Return an iterator over all values in a collection. collect(values(a)) returns an array of values. Since the values are stored internally in a hash table, the order in which they are returned may vary. But keys(a) and values(a) both iterate a and return the elements in the same order.
Examples
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> collect(values(D))
2-element Array{Int64,1}:
2
3Base.pairs — Function.pairs(collection)Return an iterator over key => value pairs for any collection that maps a set of keys to a set of values. This includes arrays, where the keys are the array indices.
pairs(IndexLinear(), A)
pairs(IndexCartesian(), A)
pairs(IndexStyle(A), A)An iterator that accesses each element of the array A, returning i => x, where i is the index for the element and x = A[i]. Identical to pairs(A), except that the style of index can be selected. Also similar to enumerate(A), except i will be a valid index for A, while enumerate always counts from 1 regardless of the indices of A.
Specifying IndexLinear() ensures that i will be an integer; specifying IndexCartesian() ensures that i will be a CartesianIndex; specifying IndexStyle(A) chooses whichever has been defined as the native indexing style for array A.
Mutation of the bounds of the underlying array will invalidate this iterator.
Examples
julia> A = ["a" "d"; "b" "e"; "c" "f"];
julia> for (index, value) in pairs(IndexStyle(A), A)
println("$index $value")
end
1 a
2 b
3 c
4 d
5 e
6 f
julia> S = view(A, 1:2, :);
julia> for (index, value) in pairs(IndexStyle(S), S)
println("$index $value")
end
CartesianIndex(1, 1) a
CartesianIndex(2, 1) b
CartesianIndex(1, 2) d
CartesianIndex(2, 2) eSee also: IndexStyle, axes.
Base.merge — Function.merge(d::AbstractDict, others::AbstractDict...)Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. If the same key is present in another collection, the value for that key will be the value it has in the last collection listed.
Examples
julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String,Float64} with 2 entries:
"bar" => 42.0
"foo" => 0.0
julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String,Int64} with 2 entries:
"bar" => 4711
"baz" => 17
julia> merge(a, b)
Dict{String,Float64} with 3 entries:
"bar" => 4711.0
"baz" => 17.0
"foo" => 0.0
julia> merge(b, a)
Dict{String,Float64} with 3 entries:
"bar" => 42.0
"baz" => 17.0
"foo" => 0.0merge(combine, d::AbstractDict, others::AbstractDict...)Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. Values with the same key will be combined using the combiner function.
Examples
julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String,Float64} with 2 entries:
"bar" => 42.0
"foo" => 0.0
julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String,Int64} with 2 entries:
"bar" => 4711
"baz" => 17
julia> merge(+, a, b)
Dict{String,Float64} with 3 entries:
"bar" => 4753.0
"baz" => 17.0
"foo" => 0.0merge(a::NamedTuple, b::NamedTuple)Construct a new named tuple by merging two existing ones. The order of fields in a is preserved, but values are taken from matching fields in b. Fields present only in b are appended at the end.
julia> merge((a=1, b=2, c=3), (b=4, d=5))
(a = 1, b = 4, c = 3, d = 5)merge(a::NamedTuple, iterable)Interpret an iterable of key-value pairs as a named tuple, and perform a merge.
julia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])
(a = 1, b = 4, c = 3, d = 5)Base.merge! — Method.merge!(d::AbstractDict, others::AbstractDict...)Update collection with pairs from the other collections. See also merge.
Examples
julia> d1 = Dict(1 => 2, 3 => 4);
julia> d2 = Dict(1 => 4, 4 => 5);
julia> merge!(d1, d2);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 5
3 => 4
1 => 4Base.merge! — Method.merge!(combine, d::AbstractDict, others::AbstractDict...)Update collection with pairs from the other collections. Values with the same key will be combined using the combiner function.
Examples
julia> d1 = Dict(1 => 2, 3 => 4);
julia> d2 = Dict(1 => 4, 4 => 5);
julia> merge!(+, d1, d2);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 5
3 => 4
1 => 6
julia> merge!(-, d1, d1);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 0
3 => 0
1 => 0Base.sizehint! — Function.sizehint!(s, n)Suggest that collection s reserve capacity for at least n elements. This can improve performance.
Base.keytype — Function.keytype(type)Get the key type of an dictionary type. Behaves similarly to eltype.
Examples
julia> keytype(Dict(Int32(1) => "foo"))
Int32Base.valtype — Function.valtype(type)Get the value type of an dictionary type. Behaves similarly to eltype.
Examples
julia> valtype(Dict(Int32(1) => "foo"))
StringFully implemented by:
Partially implemented by:
Set-Like Collections
Base.Set — Type.Base.BitSet — Type.BitSet([itr])Construct a sorted set of Ints generated by the given iterable object, or an empty set. Implemented as a bit string, and therefore designed for dense integer sets. If the set will be sparse (for example, holding a few very large integers), use Set instead.
Base.union — Function.union(s, itrs...)
∪(s, itrs...)Construct the union of sets. Maintain order with arrays.
Examples
julia> union([1, 2], [3, 4])
4-element Array{Int64,1}:
1
2
3
4
julia> union([1, 2], [2, 4])
3-element Array{Int64,1}:
1
2
4
julia> union([4, 2], 1:2)
3-element Array{Int64,1}:
4
2
1
julia> union(Set([1, 2]), 2:3)
Set([2, 3, 1])Base.union! — Function.union!(s::Union{AbstractSet,AbstractVector}, itrs...)Construct the union of passed in sets and overwrite s with the result. Maintain order with arrays.
Examples
julia> a = Set([1, 3, 4, 5]);
julia> union!(a, 1:2:8);
julia> a
Set([7, 4, 3, 5, 1])Base.intersect — Function.intersect(s, itrs...)
∩(s, itrs...)Construct the intersection of sets. Maintain order with arrays.
Examples
julia> intersect([1, 2, 3], [3, 4, 5])
1-element Array{Int64,1}:
3
julia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])
2-element Array{Int64,1}:
4
6
julia> intersect(Set([1, 2]), BitSet([2, 3]))
Set([2])Base.setdiff — Function.setdiff(s, itrs...)Construct the set of elements in s but not in any of the iterables in itrs. Maintain order with arrays.
Examples
julia> setdiff([1,2,3], [3,4,5])
2-element Array{Int64,1}:
1
2Base.setdiff! — Function.setdiff!(s, itrs...)Remove from set s (in-place) each element of each iterable from itrs. Maintain order with arrays.
Examples
julia> a = Set([1, 3, 4, 5]);
julia> setdiff!(a, 1:2:6);
julia> a
Set([4])Base.symdiff — Function.symdiff(s, itrs...)Construct the symmetric difference of elements in the passed in sets. When s is not an AbstractSet, the order is maintained. Note that in this case the multiplicity of elements matters.
Examples
julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Array{Int64,1}:
1
2
6
julia> symdiff([1,2,1], [2, 1, 2])
2-element Array{Int64,1}:
1
2
julia> symdiff(unique([1,2,1]), unique([2, 1, 2]))
0-element Array{Int64,1}Base.symdiff! — Function.symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)Construct the symmetric difference of the passed in sets, and overwrite s with the result. When s is an array, the order is maintained. Note that in this case the multiplicity of elements matters.
Base.intersect! — Function.intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)Intersect all passed in sets and overwrite s with the result. Maintain order with arrays.
Base.issubset — Function.issubset(a, b)
⊆(a,b) -> Bool
⊈(a,b) -> Bool
⊊(a,b) -> BoolDetermine whether every element of a is also in b, using in.
Examples
julia> issubset([1, 2], [1, 2, 3])
true
julia> issubset([1, 2, 3], [1, 2])
falseFully implemented by:
Partially implemented by:
Dequeues
Base.push! — Function.push!(collection, items...) -> collectionInsert one or more items at the end of collection.
Examples
julia> push!([1, 2, 3], 4, 5, 6)
6-element Array{Int64,1}:
1
2
3
4
5
6Use append! to add all the elements of another collection to collection. The result of the preceding example is equivalent to append!([1, 2, 3], [4, 5, 6]).
Base.pop! — Function.pop!(collection) -> itemRemove an item in collection and return it. If collection is an ordered container, the last item is returned.
Examples
julia> A=[1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> pop!(A)
3
julia> A
2-element Array{Int64,1}:
1
2
julia> S = Set([1, 2])
Set([2, 1])
julia> pop!(S)
2
julia> S
Set([1])
julia> pop!(Dict(1=>2))
1 => 2pop!(collection, key[, default])Delete and return the mapping for key if it exists in collection, otherwise return default, or throw an error if default is not specified.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> pop!(d, "a")
1
julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]
julia> pop!(d, "e", 4)
4Base.pushfirst! — Function.pushfirst!(collection, items...) -> collectionInsert one or more items at the beginning of collection.
Examples
julia> pushfirst!([1, 2, 3, 4], 5, 6)
6-element Array{Int64,1}:
5
6
1
2
3
4Base.popfirst! — Function.popfirst!(collection) -> itemRemove the first item from collection.
Examples
julia> A = [1, 2, 3, 4, 5, 6]
6-element Array{Int64,1}:
1
2
3
4
5
6
julia> popfirst!(A)
1
julia> A
5-element Array{Int64,1}:
2
3
4
5
6Base.insert! — Function.insert!(a::Vector, index::Integer, item)Insert an item into a at the given index. index is the index of item in the resulting a.
Examples
julia> insert!([6, 5, 4, 2, 1], 4, 3)
6-element Array{Int64,1}:
6
5
4
3
2
1Base.deleteat! — Function.deleteat!(a::Vector, i::Integer)Remove the item at the given i and return the modified a. Subsequent items are shifted to fill the resulting gap.
Examples
julia> deleteat!([6, 5, 4, 3, 2, 1], 2)
5-element Array{Int64,1}:
6
4
3
2
1deleteat!(a::Vector, inds)Remove the items at the indices given by inds, and return the modified a. Subsequent items are shifted to fill the resulting gap.
inds can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector of the same length as a with true indicating entries to delete.
Examples
julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))
ERROR: ArgumentError: indices must be unique and sorted
Stacktrace:
[...]Base.splice! — Function.splice!(a::Vector, index::Integer, [replacement]) -> itemRemove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed item.
Examples
julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)
2
julia> A
5-element Array{Int64,1}:
6
5
4
3
1
julia> splice!(A, 5, -1)
1
julia> A
5-element Array{Int64,1}:
6
5
4
3
-1
julia> splice!(A, 1, [-1, -2, -3])
6
julia> A
7-element Array{Int64,1}:
-1
-2
-3
5
4
3
-1To insert replacement before an index n without removing any items, use splice!(collection, n:n-1, replacement).
splice!(a::Vector, range, [replacement]) -> itemsRemove items in the specified index range, and return a collection containing the removed items. Subsequent items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed items.
To insert replacement before an index n without removing any items, use splice!(collection, n:n-1, replacement).
Examples
julia> splice!(A, 4:3, 2)
0-element Array{Int64,1}
julia> A
8-element Array{Int64,1}:
-1
-2
-3
2
5
4
3
-1Base.resize! — Function.resize!(a::Vector, n::Integer) -> VectorResize a to contain n elements. If n is smaller than the current collection length, the first n elements will be retained. If n is larger, the new elements are not guaranteed to be initialized.
Examples
julia> resize!([6, 5, 4, 3, 2, 1], 3)
3-element Array{Int64,1}:
6
5
4
julia> a = resize!([6, 5, 4, 3, 2, 1], 8);
julia> length(a)
8
julia> a[1:6]
6-element Array{Int64,1}:
6
5
4
3
2
1Base.append! — Function.append!(collection, collection2) -> collection.Add the elements of collection2 to the end of collection.
Examples
julia> append!([1],[2,3])
3-element Array{Int64,1}:
1
2
3
julia> append!([1, 2, 3], [4, 5, 6])
6-element Array{Int64,1}:
1
2
3
4
5
6Use push! to add individual items to collection which are not already themselves in another collection. The result is of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6).
Base.prepend! — Function.prepend!(a::Vector, items) -> collectionInsert the elements of items to the beginning of a.
Examples
julia> prepend!([3],[1,2])
3-element Array{Int64,1}:
1
2
3Fully implemented by:
Utility Collections
Base.Pair — Type.Pair(x, y)
x => yConstruct a Pair object with type Pair{typeof(x), typeof(y)}. The elements are stored in the fields first and second. They can also be accessed via iteration.
See also: Dict
Examples
julia> p = "foo" => 7
"foo" => 7
julia> typeof(p)
Pair{String,Int64}
julia> p.first
"foo"
julia> for x in p
println(x)
end
foo
7Base.Iterators.Pairs — Type.Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}Transforms an indexable container into an Dictionary-view of the same data. Modifying the key-space of the underlying data may invalidate this object.