Theory Separation

(*  Title:      ZF/Constructible/Separation.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

sectionEarly Instances of Separation and Strong Replacement

theory Separation imports L_axioms WF_absolute begin

textThis theory proves all instances needed for locale M_basic›

textHelps us solve for de Bruijn indices!
lemma nth_ConsI: "[|nth(n,l) = x; n  nat|] ==> nth(succ(n), Cons(a,l)) = x"
by simp

lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
                   fun_plus_iff_sats

lemma Collect_conj_in_DPow:
     "[| {xA. P(x)}  DPow(A);  {xA. Q(x)}  DPow(A) |]
      ==> {xA. P(x) & Q(x)}  DPow(A)"
by (simp add: Int_in_DPow Collect_Int_Collect_eq [symmetric])

lemma Collect_conj_in_DPow_Lset:
     "[|z  Lset(j); {x  Lset(j). P(x)}  DPow(Lset(j))|]
      ==> {x  Lset(j). x  z & P(x)}  DPow(Lset(j))"
apply (frule mem_Lset_imp_subset_Lset)
apply (simp add: Collect_conj_in_DPow Collect_mem_eq
                 subset_Int_iff2 elem_subset_in_DPow)
done

lemma separation_CollectI:
     "(z. L(z) ==> L({x  z . P(x)})) ==> separation(L, λx. P(x))"
apply (unfold separation_def, clarify)
apply (rule_tac x="{xz. P(x)}" in rexI)
apply simp_all
done

textReduces the original comprehension to the reflected one
lemma reflection_imp_L_separation:
      "[| xLset(j). P(x)  Q(x);
          {x  Lset(j) . Q(x)}  DPow(Lset(j));
          Ord(j);  z  Lset(j)|] ==> L({x  z . P(x)})"
apply (rule_tac i = "succ(j)" in L_I)
 prefer 2 apply simp
apply (subgoal_tac "{x  z. P(x)} = {x  Lset(j). x  z & (Q(x))}")
 prefer 2
 apply (blast dest: mem_Lset_imp_subset_Lset)
apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
done

textEncapsulates the standard proof script for proving instances of 
      Separation.
lemma gen_separation:
 assumes reflection: "REFLECTS [P,Q]"
     and Lu:         "L(u)"
     and collI: "!!j. u  Lset(j)
                 Collect(Lset(j), Q(j))  DPow(Lset(j))"
 shows "separation(L,P)"
apply (rule separation_CollectI)
apply (rule_tac A="{u,z}" in subset_LsetE, blast intro: Lu)
apply (rule ReflectsE [OF reflection], assumption)
apply (drule subset_Lset_ltD, assumption)
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2, clarify)
apply (rule collI, assumption)
done

textAs above, but typically termu is a finite enumeration such as
  term{a,b}; thus the new subgoal gets the assumption
  term{a,b}  Lset(i), which is logically equivalent to 
  terma  Lset(i) and termb  Lset(i).
lemma gen_separation_multi:
 assumes reflection: "REFLECTS [P,Q]"
     and Lu:         "L(u)"
     and collI: "!!j. u  Lset(j)
                 Collect(Lset(j), Q(j))  DPow(Lset(j))"
 shows "separation(L,P)"
apply (rule gen_separation [OF reflection Lu])
apply (drule mem_Lset_imp_subset_Lset)
apply (erule collI) 
done


subsectionSeparation for Intersection

lemma Inter_Reflects:
     "REFLECTS[λx. y[L]. yA  x  y,
               λi x. yLset(i). yA  x  y]"
by (intro FOL_reflections)

lemma Inter_separation:
     "L(A) ==> separation(L, λx. y[L]. yA  xy)"
apply (rule gen_separation [OF Inter_Reflects], simp)
apply (rule DPow_LsetI)
 txtI leave this one example of a manual proof.  The tedium of manually
      instantiating termi, termj and termenv is obvious.
apply (rule ball_iff_sats)
apply (rule imp_iff_sats)
apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
apply (rule_tac i=0 and j=2 in mem_iff_sats)
apply (simp_all add: succ_Un_distrib [symmetric])
done

subsectionSeparation for Set Difference

lemma Diff_Reflects:
     "REFLECTS[λx. x  B, λi x. x  B]"
by (intro FOL_reflections)  

lemma Diff_separation:
     "L(B) ==> separation(L, λx. x  B)"
apply (rule gen_separation [OF Diff_Reflects], simp)
apply (rule_tac env="[B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

subsectionSeparation for Cartesian Product

lemma cartprod_Reflects:
     "REFLECTS[λz. x[L]. xA & (y[L]. yB & pair(L,x,y,z)),
                λi z. xLset(i). xA & (yLset(i). yB &
                                   pair(##Lset(i),x,y,z))]"
by (intro FOL_reflections function_reflections)

lemma cartprod_separation:
     "[| L(A); L(B) |]
      ==> separation(L, λz. x[L]. xA & (y[L]. yB & pair(L,x,y,z)))"
apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
apply (rule_tac env="[A,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

subsectionSeparation for Image

lemma image_Reflects:
     "REFLECTS[λy. p[L]. pr & (x[L]. xA & pair(L,x,y,p)),
           λi y. pLset(i). pr & (xLset(i). xA & pair(##Lset(i),x,y,p))]"
by (intro FOL_reflections function_reflections)

lemma image_separation:
     "[| L(A); L(r) |]
      ==> separation(L, λy. p[L]. pr & (x[L]. xA & pair(L,x,y,p)))"
apply (rule gen_separation_multi [OF image_Reflects, of "{A,r}"], auto)
apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionSeparation for Converse

lemma converse_Reflects:
  "REFLECTS[λz. p[L]. pr & (x[L]. y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
     λi z. pLset(i). pr & (xLset(i). yLset(i).
                     pair(##Lset(i),x,y,p) & pair(##Lset(i),y,x,z))]"
by (intro FOL_reflections function_reflections)

lemma converse_separation:
     "L(r) ==> separation(L,
         λz. p[L]. pr & (x[L]. y[L]. pair(L,x,y,p) & pair(L,y,x,z)))"
apply (rule gen_separation [OF converse_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionSeparation for Restriction

lemma restrict_Reflects:
     "REFLECTS[λz. x[L]. xA & (y[L]. pair(L,x,y,z)),
        λi z. xLset(i). xA & (yLset(i). pair(##Lset(i),x,y,z))]"
by (intro FOL_reflections function_reflections)

lemma restrict_separation:
   "L(A) ==> separation(L, λz. x[L]. xA & (y[L]. pair(L,x,y,z)))"
apply (rule gen_separation [OF restrict_Reflects], simp)
apply (rule_tac env="[A]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionSeparation for Composition

lemma comp_Reflects:
     "REFLECTS[λxz. x[L]. y[L]. z[L]. xy[L]. yz[L].
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
                  xys & yzr,
        λi xz. xLset(i). yLset(i). zLset(i). xyLset(i). yzLset(i).
                  pair(##Lset(i),x,z,xz) & pair(##Lset(i),x,y,xy) &
                  pair(##Lset(i),y,z,yz) & xys & yzr]"
by (intro FOL_reflections function_reflections)

lemma comp_separation:
     "[| L(r); L(s) |]
      ==> separation(L, λxz. x[L]. y[L]. z[L]. xy[L]. yz[L].
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
                  xys & yzr)"
apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)
txtSubgoals after applying general ``separation'' rule:
     @{subgoals[display,indent=0,margin=65]}
apply (rule_tac env="[r,s]" in DPow_LsetI)
txtSubgoals ready for automatic synthesis of a formula:
     @{subgoals[display,indent=0,margin=65]}
apply (rule sep_rules | simp)+
done


subsectionSeparation for Predecessors in an Order

lemma pred_Reflects:
     "REFLECTS[λy. p[L]. pr & pair(L,y,x,p),
                    λi y. p  Lset(i). pr & pair(##Lset(i),y,x,p)]"
by (intro FOL_reflections function_reflections)

lemma pred_separation:
     "[| L(r); L(x) |] ==> separation(L, λy. p[L]. pr & pair(L,y,x,p))"
apply (rule gen_separation_multi [OF pred_Reflects, of "{r,x}"], auto)
apply (rule_tac env="[r,x]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionSeparation for the Membership Relation

lemma Memrel_Reflects:
     "REFLECTS[λz. x[L]. y[L]. pair(L,x,y,z) & x  y,
            λi z. x  Lset(i). y  Lset(i). pair(##Lset(i),x,y,z) & x  y]"
by (intro FOL_reflections function_reflections)

lemma Memrel_separation:
     "separation(L, λz. x[L]. y[L]. pair(L,x,y,z) & x  y)"
apply (rule gen_separation [OF Memrel_Reflects nonempty])
apply (rule_tac env="[]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionReplacement for FunSpace

lemma funspace_succ_Reflects:
 "REFLECTS[λz. p[L]. pA & (f[L]. b[L]. nb[L]. cnbf[L].
            pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
            upair(L,cnbf,cnbf,z)),
        λi z. p  Lset(i). pA & (f  Lset(i). b  Lset(i).
              nb  Lset(i). cnbf  Lset(i).
                pair(##Lset(i),f,b,p) & pair(##Lset(i),n,b,nb) &
                is_cons(##Lset(i),nb,f,cnbf) & upair(##Lset(i),cnbf,cnbf,z))]"
by (intro FOL_reflections function_reflections)

lemma funspace_succ_replacement:
     "L(n) ==>
      strong_replacement(L, λp z. f[L]. b[L]. nb[L]. cnbf[L].
                pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
                upair(L,cnbf,cnbf,z))"
apply (rule strong_replacementI)
apply (rule_tac u="{n,B}" in gen_separation_multi [OF funspace_succ_Reflects], 
       auto)
apply (rule_tac env="[n,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionSeparation for a Theorem about termis_recfun

lemma is_recfun_reflects:
  "REFLECTS[λx. xa[L]. xb[L].
                pair(L,x,a,xa) & xa  r & pair(L,x,b,xb) & xb  r &
                (fx[L]. gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
                                   fx  gx),
   λi x. xa  Lset(i). xb  Lset(i).
          pair(##Lset(i),x,a,xa) & xa  r & pair(##Lset(i),x,b,xb) & xb  r &
                (fx  Lset(i). gx  Lset(i). fun_apply(##Lset(i),f,x,fx) &
                  fun_apply(##Lset(i),g,x,gx) & fx  gx)]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma is_recfun_separation:
     ― ‹for well-founded recursion
     "[| L(r); L(f); L(g); L(a); L(b) |]
     ==> separation(L,
            λx. xa[L]. xb[L].
                pair(L,x,a,xa) & xa  r & pair(L,x,b,xb) & xb  r &
                (fx[L]. gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
                                   fx  gx))"
apply (rule gen_separation_multi [OF is_recfun_reflects, of "{r,f,g,a,b}"], 
            auto)
apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsectionInstantiating the locale M_basic›
textSeparation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.

lemma M_basic_axioms_L: "M_basic_axioms(L)"
  apply (rule M_basic_axioms.intro)
       apply (assumption | rule
         Inter_separation Diff_separation cartprod_separation image_separation
         converse_separation restrict_separation
         comp_separation pred_separation Memrel_separation
         funspace_succ_replacement is_recfun_separation power_ax)+
  done

theorem M_basic_L: " M_basic(L)"
by (rule M_basic.intro [OF M_trivial_L M_basic_axioms_L])

interpretation L: M_basic L by (rule M_basic_L)


end