Theory Brouwer

(*  Title:      ZF/Induct/Brouwer.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge
*)

section Infinite branching datatype definitions

theory Brouwer imports ZFC begin

subsection The Brouwer ordinals

consts
  brouwer :: i

datatype  "Vfrom(0, csucc(nat))"
    "brouwer" = Zero | Suc ("b  brouwer") | Lim ("h  nat -> brouwer")
  monos Pi_mono
  type_intros inf_datatype_intros

lemma brouwer_unfold: "brouwer = {0} + brouwer + (nat -> brouwer)"
  by (fast intro!: brouwer.intros [unfolded brouwer.con_defs]
    elim: brouwer.cases [unfolded brouwer.con_defs])

lemma brouwer_induct2 [consumes 1, case_names Zero Suc Lim]:
  assumes b: "b  brouwer"
    and cases:
      "P(Zero)"
      "!!b. [| b  brouwer;  P(b) |] ==> P(Suc(b))"
      "!!h. [| h  nat -> brouwer;  i  nat. P(h`i) |] ==> P(Lim(h))"
  shows "P(b)"
  ― ‹A nicer induction rule than the standard one.
  using b
  apply induct
    apply (rule cases(1))
   apply (erule (1) cases(2))
  apply (rule cases(3))
   apply (fast elim: fun_weaken_type)
  apply (fast dest: apply_type)
  done


subsection The Martin-Löf wellordering type

consts
  Well :: "[i, i => i] => i"

datatype  "Vfrom(A  (x  A. B(x)), csucc(nat  |x  A. B(x)|))"
    ― ‹The union with nat› ensures that the cardinal is infinite.
  "Well(A, B)" = Sup ("a  A", "f  B(a) -> Well(A, B)")
  monos Pi_mono
  type_intros le_trans [OF UN_upper_cardinal le_nat_Un_cardinal] inf_datatype_intros

lemma Well_unfold: "Well(A, B) = (x  A. B(x) -> Well(A, B))"
  by (fast intro!: Well.intros [unfolded Well.con_defs]
    elim: Well.cases [unfolded Well.con_defs])


lemma Well_induct2 [consumes 1, case_names step]:
  assumes w: "w  Well(A, B)"
    and step: "!!a f. [| a  A;  f  B(a) -> Well(A,B);  y  B(a). P(f`y) |] ==> P(Sup(a,f))"
  shows "P(w)"
  ― ‹A nicer induction rule than the standard one.
  using w
  apply induct
  apply (assumption | rule step)+
   apply (fast elim: fun_weaken_type)
  apply (fast dest: apply_type)
  done

lemma Well_bool_unfold: "Well(bool, λx. x) = 1 + (1 -> Well(bool, λx. x))"
  ― ‹In fact it's isomorphic to nat›, but we need a recursion operator
  ― ‹for Well› to prove this.
  apply (rule Well_unfold [THEN trans])
  apply (simp add: Sigma_bool succ_def)
  done

end