Theory Comb

(*  Title:      ZF/Induct/Comb.thy
    Author:     Lawrence C Paulson
    Copyright   1994  University of Cambridge
*)

section Combinatory Logic example: the Church-Rosser Theorem

theory Comb
imports ZF
begin

text 
  Curiously, combinators do not include free variables.

  Example taken from @{cite camilleri92}.



subsection Definitions

text Datatype definition of combinators S› and K›.

consts comb :: i
datatype comb =
  K
| S
| app ("p  comb", "q  comb")  (infixl  90)

text 
  Inductive definition of contractions, 1 and
  (multi-step) reductions, →›.


consts contract  :: i
abbreviation contract_syntax :: "[i,i]  o"  (infixl 1 50)
  where "p 1 q  <p,q>  contract"

abbreviation contract_multi :: "[i,i]  o"  (infixl  50)
  where "p  q  <p,q>  contract^*"

inductive
  domains "contract"  "comb × comb"
  intros
    K:   "[| p  comb;  q  comb |] ==> Kpq 1 p"
    S:   "[| p  comb;  q  comb;  r  comb |] ==> Spqr 1 (pr)(qr)"
    Ap1: "[| p1q;  r  comb |] ==> pr 1 qr"
    Ap2: "[| p1q;  r  comb |] ==> rp 1 rq"
  type_intros comb.intros

text 
  Inductive definition of parallel contractions, 1 and
  (multi-step) parallel reductions, ⇛›.


consts parcontract :: i

abbreviation parcontract_syntax :: "[i,i] => o"  (infixl 1 50)
  where "p 1 q == <p,q>  parcontract"

abbreviation parcontract_multi :: "[i,i] => o"  (infixl  50)
  where "p  q == <p,q>  parcontract^+"

inductive
  domains "parcontract"  "comb × comb"
  intros
    refl: "[| p  comb |] ==> p 1 p"
    K:    "[| p  comb;  q  comb |] ==> Kpq 1 p"
    S:    "[| p  comb;  q  comb;  r  comb |] ==> Spqr 1 (pr)(qr)"
    Ap:   "[| p1q;  r1s |] ==> pr 1 qs"
  type_intros comb.intros

text 
  Misc definitions.


definition I :: i
  where "I  SKK"

definition diamond :: "i  o"
  where "diamond(r) 
    x y. <x,y>r  (y'. <x,y'>r  (z. <y,z>r & <y',z>  r))"


subsection Transitive closure preserves the Church-Rosser property

lemma diamond_strip_lemmaD [rule_format]:
  "[| diamond(r);  <x,y>:r^+ |] ==>
    y'. <x,y'>:r  (z. <y',z>: r^+ & <y,z>: r)"
  apply (unfold diamond_def)
  apply (erule trancl_induct)
   apply (blast intro: r_into_trancl)
  apply clarify
  apply (drule spec [THEN mp], assumption)
  apply (blast intro: r_into_trancl trans_trancl [THEN transD])
  done

lemma diamond_trancl: "diamond(r) ==> diamond(r^+)"
  apply (simp (no_asm_simp) add: diamond_def)
  apply (rule impI [THEN allI, THEN allI])
  apply (erule trancl_induct)
   apply auto
   apply (best intro: r_into_trancl trans_trancl [THEN transD]
     dest: diamond_strip_lemmaD)+
  done

inductive_cases Ap_E [elim!]: "pq  comb"


subsection Results about Contraction

text 
  For type checking: replaces terma 1 b by a, b ∈
  comb›.


lemmas contract_combE2 = contract.dom_subset [THEN subsetD, THEN SigmaE2]
  and contract_combD1 = contract.dom_subset [THEN subsetD, THEN SigmaD1]
  and contract_combD2 = contract.dom_subset [THEN subsetD, THEN SigmaD2]

lemma field_contract_eq: "field(contract) = comb"
  by (blast intro: contract.K elim!: contract_combE2)

lemmas reduction_refl =
  field_contract_eq [THEN equalityD2, THEN subsetD, THEN rtrancl_refl]

lemmas rtrancl_into_rtrancl2 =
  r_into_rtrancl [THEN trans_rtrancl [THEN transD]]

declare reduction_refl [intro!] contract.K [intro!] contract.S [intro!]

lemmas reduction_rls =
  contract.K [THEN rtrancl_into_rtrancl2]
  contract.S [THEN rtrancl_into_rtrancl2]
  contract.Ap1 [THEN rtrancl_into_rtrancl2]
  contract.Ap2 [THEN rtrancl_into_rtrancl2]

lemma "p  comb ==> Ip  p"
  ― ‹Example only: not used
  unfolding I_def by (blast intro: reduction_rls)

lemma comb_I: "I  comb"
  unfolding I_def by blast


subsection Non-contraction results

text Derive a case for each combinator constructor.

inductive_cases K_contractE [elim!]: "K 1 r"
  and S_contractE [elim!]: "S 1 r"
  and Ap_contractE [elim!]: "pq 1 r"

lemma I_contract_E: "I 1 r ==> P"
  by (auto simp add: I_def)

lemma K1_contractD: "Kp 1 r ==> (q. r = Kq & p 1 q)"
  by auto

lemma Ap_reduce1: "[| p  q;  r  comb |] ==> pr  qr"
  apply (frule rtrancl_type [THEN subsetD, THEN SigmaD1])
  apply (drule field_contract_eq [THEN equalityD1, THEN subsetD])
  apply (erule rtrancl_induct)
   apply (blast intro: reduction_rls)
  apply (erule trans_rtrancl [THEN transD])
  apply (blast intro: contract_combD2 reduction_rls)
  done

lemma Ap_reduce2: "[| p  q;  r  comb |] ==> rp  rq"
  apply (frule rtrancl_type [THEN subsetD, THEN SigmaD1])
  apply (drule field_contract_eq [THEN equalityD1, THEN subsetD])
  apply (erule rtrancl_induct)
   apply (blast intro: reduction_rls)
  apply (blast intro: trans_rtrancl [THEN transD] 
                      contract_combD2 reduction_rls)
  done

text Counterexample to the diamond property for 1.

lemma KIII_contract1: "KI(II) 1 I"
  by (blast intro: comb_I)

lemma KIII_contract2: "KI(II) 1 KI((KI)(KI))"
  by (unfold I_def) (blast intro: contract.intros)

lemma KIII_contract3: "KI((KI)(KI)) 1 I"
  by (blast intro: comb_I)

lemma not_diamond_contract: "¬ diamond(contract)"
  apply (unfold diamond_def)
  apply (blast intro: KIII_contract1 KIII_contract2 KIII_contract3
    elim!: I_contract_E)
  done


subsection Results about Parallel Contraction

text For type checking: replaces a ⇛1 b› by a, b
  ∈ comb›
lemmas parcontract_combE2 = parcontract.dom_subset [THEN subsetD, THEN SigmaE2]
  and parcontract_combD1 = parcontract.dom_subset [THEN subsetD, THEN SigmaD1]
  and parcontract_combD2 = parcontract.dom_subset [THEN subsetD, THEN SigmaD2]

lemma field_parcontract_eq: "field(parcontract) = comb"
  by (blast intro: parcontract.K elim!: parcontract_combE2)

text Derive a case for each combinator constructor.
inductive_cases
      K_parcontractE [elim!]: "K 1 r"
  and S_parcontractE [elim!]: "S 1 r"
  and Ap_parcontractE [elim!]: "pq 1 r"

declare parcontract.intros [intro]


subsection Basic properties of parallel contraction

lemma K1_parcontractD [dest!]:
    "Kp 1 r ==> (p'. r = Kp' & p 1 p')"
  by auto

lemma S1_parcontractD [dest!]:
    "Sp 1 r ==> (p'. r = Sp' & p 1 p')"
  by auto

lemma S2_parcontractD [dest!]:
    "Spq 1 r ==> (p' q'. r = Sp'q' & p 1 p' & q 1 q')"
  by auto

lemma diamond_parcontract: "diamond(parcontract)"
  ― ‹Church-Rosser property for parallel contraction
  apply (unfold diamond_def)
  apply (rule impI [THEN allI, THEN allI])
  apply (erule parcontract.induct)
     apply (blast elim!: comb.free_elims  intro: parcontract_combD2)+
  done

text 
  \medskip Equivalence of propp  q and propp  q.


lemma contract_imp_parcontract: "p1q ==> p1q"
  by (induct set: contract) auto

lemma reduce_imp_parreduce: "pq ==> pq"
  apply (frule rtrancl_type [THEN subsetD, THEN SigmaD1])
  apply (drule field_contract_eq [THEN equalityD1, THEN subsetD])
  apply (erule rtrancl_induct)
   apply (blast intro: r_into_trancl)
  apply (blast intro: contract_imp_parcontract r_into_trancl
    trans_trancl [THEN transD])
  done

lemma parcontract_imp_reduce: "p1q ==> pq"
  apply (induct set: parcontract)
     apply (blast intro: reduction_rls)
    apply (blast intro: reduction_rls)
   apply (blast intro: reduction_rls)
  apply (blast intro: trans_rtrancl [THEN transD]
    Ap_reduce1 Ap_reduce2 parcontract_combD1 parcontract_combD2)
  done

lemma parreduce_imp_reduce: "pq ==> pq"
  apply (frule trancl_type [THEN subsetD, THEN SigmaD1])
  apply (drule field_parcontract_eq [THEN equalityD1, THEN subsetD])
  apply (erule trancl_induct, erule parcontract_imp_reduce)
  apply (erule trans_rtrancl [THEN transD])
  apply (erule parcontract_imp_reduce)
  done

lemma parreduce_iff_reduce: "pq  pq"
  by (blast intro: parreduce_imp_reduce reduce_imp_parreduce)

end