Theory Union

(*  Title:      ZF/UNITY/Union.thy
    Author:     Sidi O Ehmety, Computer Laboratory
    Copyright   2001  University of Cambridge

Unions of programs

Partly from Misra's Chapter 5 ∈ Asynchronous Compositions of Programs

Theory ported form HOL..

*)

theory Union imports SubstAx FP
begin

definition
  (*FIXME: conjoin Init(F) ∩ Init(G) ≠ 0 *)
  ok :: "[i, i] => o"     (infixl ok 65)  where
    "F ok G == Acts(F)  AllowedActs(G) &
               Acts(G)  AllowedActs(F)"

definition
  (*FIXME: conjoin (⋂i ∈ I. Init(F(i))) ≠ 0 *)
  OK  :: "[i, i=>i] => o"  where
    "OK(I,F) == (i  I. j  I-{i}. Acts(F(i))  AllowedActs(F(j)))"

definition
  JOIN  :: "[i, i=>i] => i"  where
  "JOIN(I,F) == if I = 0 then SKIP else
                 mk_program(i  I. Init(F(i)), i  I. Acts(F(i)),
                 i  I. AllowedActs(F(i)))"

definition
  Join :: "[i, i] => i"  (infixl  65)  where
  "F  G == mk_program (Init(F)  Init(G), Acts(F)  Acts(G),
                                AllowedActs(F)  AllowedActs(G))"
definition
  (*Characterizes safety properties.  Used with specifying AllowedActs*)
  safety_prop :: "i => o"  where
  "safety_prop(X) == Xprogram &
      SKIP  X & (G  program. Acts(G)  (F  X. Acts(F))  G  X)"

syntax
  "_JOIN1"  :: "[pttrns, i] => i"     ((3_./ _) 10)
  "_JOIN"   :: "[pttrn, i, i] => i"   ((3_  _./ _) 10)

translations
  "x  A. B"   == "CONST JOIN(A, (λx. B))"
  "x y. B"   == "x. y. B"
  "x. B"     == "CONST JOIN(CONST state, (λx. B))"


subsectionSKIP

lemma reachable_SKIP [simp]: "reachable(SKIP) = state"
by (force elim: reachable.induct intro: reachable.intros)

textElimination programify from ok and ⊔

lemma ok_programify_left [iff]: "programify(F) ok G  F ok G"
by (simp add: ok_def)

lemma ok_programify_right [iff]: "F ok programify(G)  F ok G"
by (simp add: ok_def)

lemma Join_programify_left [simp]: "programify(F)  G = F  G"
by (simp add: Join_def)

lemma Join_programify_right [simp]: "F  programify(G) = F  G"
by (simp add: Join_def)

subsectionSKIP and safety properties

lemma SKIP_in_constrains_iff [iff]: "(SKIP  A co B)  (AB & st_set(A))"
by (unfold constrains_def st_set_def, auto)

lemma SKIP_in_Constrains_iff [iff]: "(SKIP  A Co B) (state  AB)"
by (unfold Constrains_def, auto)

lemma SKIP_in_stable [iff]: "SKIP  stable(A)  st_set(A)"
by (auto simp add: stable_def)

lemma SKIP_in_Stable [iff]: "SKIP  Stable(A)"
by (unfold Stable_def, auto)

subsectionJoin and JOIN types

lemma Join_in_program [iff,TC]: "F  G  program"
by (unfold Join_def, auto)

lemma JOIN_in_program [iff,TC]: "JOIN(I,F)  program"
by (unfold JOIN_def, auto)

subsectionInit, Acts, and AllowedActs of Join and JOIN
lemma Init_Join [simp]: "Init(F  G) = Init(F)  Init(G)"
by (simp add: Int_assoc Join_def)

lemma Acts_Join [simp]: "Acts(F  G) = Acts(F)  Acts(G)"
by (simp add: Int_Un_distrib2 cons_absorb Join_def)

lemma AllowedActs_Join [simp]: "AllowedActs(F  G) =
  AllowedActs(F)  AllowedActs(G)"
apply (simp add: Int_assoc cons_absorb Join_def)
done

subsectionJoin's algebraic laws

lemma Join_commute: "F  G = G  F"
by (simp add: Join_def Un_commute Int_commute)

lemma Join_left_commute: "A  (B  C) = B  (A  C)"
apply (simp add: Join_def Int_Un_distrib2 cons_absorb)
apply (simp add: Un_ac Int_ac Int_Un_distrib2 cons_absorb)
done

lemma Join_assoc: "(F  G)  H = F  (G  H)"
by (simp add: Un_ac Join_def cons_absorb Int_assoc Int_Un_distrib2)

subsectionNeeded below
lemma cons_id [simp]: "cons(id(state), Pow(state * state)) = Pow(state*state)"
by auto

lemma Join_SKIP_left [simp]: "SKIP  F = programify(F)"
apply (unfold Join_def SKIP_def)
apply (auto simp add: Int_absorb cons_eq)
done

lemma Join_SKIP_right [simp]: "F  SKIP =  programify(F)"
apply (subst Join_commute)
apply (simp add: Join_SKIP_left)
done

lemma Join_absorb [simp]: "F  F = programify(F)"
by (rule program_equalityI, auto)

lemma Join_left_absorb: "F  (F  G) = F  G"
by (simp add: Join_assoc [symmetric])

subsectionJoin is an AC-operator
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute

subsectionEliminating programify form JOIN and OK expressions

lemma OK_programify [iff]: "OK(I, %x. programify(F(x)))  OK(I, F)"
by (simp add: OK_def)

lemma JOIN_programify [iff]: "JOIN(I, %x. programify(F(x))) = JOIN(I, F)"
by (simp add: JOIN_def)


subsectionJOIN

lemma JOIN_empty [simp]: "JOIN(0, F) = SKIP"
by (unfold JOIN_def, auto)

lemma Init_JOIN [simp]:
     "Init(i  I. F(i)) = (if I=0 then state else (i  I. Init(F(i))))"
by (simp add: JOIN_def INT_extend_simps del: INT_simps)

lemma Acts_JOIN [simp]:
     "Acts(JOIN(I,F)) = cons(id(state), i  I.  Acts(F(i)))"
apply (unfold JOIN_def)
apply (auto simp del: INT_simps UN_simps)
apply (rule equalityI)
apply (auto dest: Acts_type [THEN subsetD])
done

lemma AllowedActs_JOIN [simp]:
     "AllowedActs(i  I. F(i)) =
      (if I=0 then Pow(state*state) else (i  I. AllowedActs(F(i))))"
apply (unfold JOIN_def, auto)
apply (rule equalityI)
apply (auto elim!: not_emptyE dest: AllowedActs_type [THEN subsetD])
done

lemma JOIN_cons [simp]: "(i  cons(a,I). F(i)) = F(a)  (i  I. F(i))"
by (rule program_equalityI, auto)

lemma JOIN_cong [cong]:
    "[| I=J;  !!i. i  J ==> F(i) = G(i) |] ==>
     (i  I. F(i)) = (i  J. G(i))"
by (simp add: JOIN_def)



subsectionJOIN laws
lemma JOIN_absorb: "k  I ==>F(k)  (i  I. F(i)) = (i  I. F(i))"
apply (subst JOIN_cons [symmetric])
apply (auto simp add: cons_absorb)
done

lemma JOIN_Un: "(i  I  J. F(i)) = ((i  I. F(i))  (i  J. F(i)))"
apply (rule program_equalityI)
apply (simp_all add: UN_Un INT_Un)
apply (simp_all del: INT_simps add: INT_extend_simps, blast)
done

lemma JOIN_constant: "(i  I. c) = (if I=0 then SKIP else programify(c))"
by (rule program_equalityI, auto)

lemma JOIN_Join_distrib:
     "(i  I. F(i)  G(i)) = (i  I. F(i))    (i  I. G(i))"
apply (rule program_equalityI)
apply (simp_all add: INT_Int_distrib, blast)
done

lemma JOIN_Join_miniscope: "(i  I. F(i)  G) = ((i  I. F(i)  G))"
by (simp add: JOIN_Join_distrib JOIN_constant)

textUsed to prove guarantees_JOIN_I
lemma JOIN_Join_diff: "i  I==>F(i)  JOIN(I - {i}, F) = JOIN(I, F)"
apply (rule program_equalityI)
apply (auto elim!: not_emptyE)
done

subsectionSafety: co, stable, FP


(*Fails if I=0 because it collapses to SKIP ∈ A co B, i.e. to A⊆B.  So an
  alternative precondition is A⊆B, but most proofs using this rule require
  I to be nonempty for other reasons anyway.*)

lemma JOIN_constrains:
 "i  I==>(i  I. F(i))  A co B  (i  I. programify(F(i))  A co B)"

apply (unfold constrains_def JOIN_def st_set_def, auto)
prefer 2 apply blast
apply (rename_tac j act y z)
apply (cut_tac F = "F (j) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done

lemma Join_constrains [iff]:
     "(F  G  A co B)  (programify(F)  A co B & programify(G)  A co B)"
by (auto simp add: constrains_def)

lemma Join_unless [iff]:
     "(F  G  A unless B) 
    (programify(F)  A unless B & programify(G)  A unless B)"
by (simp add: Join_constrains unless_def)


(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
  reachable (F ⊔ G) could be much bigger than reachable F, reachable G
*)

lemma Join_constrains_weaken:
     "[| F  A co A';  G  B co B' |]
      ==> F  G  (A  B) co (A'  B')"
apply (subgoal_tac "st_set (A) & st_set (B) & F  program & G  program")
prefer 2 apply (blast dest: constrainsD2, simp)
apply (blast intro: constrains_weaken)
done

(*If I=0, it degenerates to SKIP ∈ state co 0, which is false.*)
lemma JOIN_constrains_weaken:
  assumes major: "(!!i. i  I ==> F(i)  A(i) co A'(i))"
      and minor: "i  I"
  shows "(i  I. F(i))  (i  I. A(i)) co (i  I. A'(i))"
apply (cut_tac minor)
apply (simp (no_asm_simp) add: JOIN_constrains)
apply clarify
apply (rename_tac "j")
apply (frule_tac i = j in major)
apply (frule constrainsD2, simp)
apply (blast intro: constrains_weaken)
done

lemma JOIN_stable:
     "(i  I. F(i))   stable(A)  ((i  I. programify(F(i))  stable(A)) & st_set(A))"
apply (auto simp add: stable_def constrains_def JOIN_def)
apply (cut_tac F = "F (i) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done

lemma initially_JOIN_I:
  assumes major: "(!!i. i  I ==>F(i)  initially(A))"
      and minor: "i  I"
  shows  "(i  I. F(i))  initially(A)"
apply (cut_tac minor)
apply (auto elim!: not_emptyE simp add: Inter_iff initially_def)
apply (frule_tac i = x in major)
apply (auto simp add: initially_def)
done

lemma invariant_JOIN_I:
  assumes major: "(!!i. i  I ==> F(i)  invariant(A))"
      and minor: "i  I"
  shows "(i  I. F(i))  invariant(A)"
apply (cut_tac minor)
apply (auto intro!: initially_JOIN_I dest: major simp add: invariant_def JOIN_stable)
apply (erule_tac V = "i  I" in thin_rl)
apply (frule major)
apply (drule_tac [2] major)
apply (auto simp add: invariant_def)
apply (frule stableD2, force)+
done

lemma Join_stable [iff]:
     " (F  G  stable(A)) 
      (programify(F)  stable(A) & programify(G)   stable(A))"
by (simp add: stable_def)

lemma initially_JoinI [intro!]:
     "[| F  initially(A); G  initially(A) |] ==> F  G  initially(A)"
by (unfold initially_def, auto)

lemma invariant_JoinI:
     "[| F  invariant(A); G  invariant(A) |]
      ==> F  G  invariant(A)"
apply (subgoal_tac "F  program&G  program")
prefer 2 apply (blast dest: invariantD2)
apply (simp add: invariant_def)
apply (auto intro: Join_in_program)
done


(* Fails if I=0 because ⋂i ∈ 0. A(i) = 0 *)
lemma FP_JOIN: "i  I ==> FP(i  I. F(i)) = (i  I. FP (programify(F(i))))"
by (auto simp add: FP_def Inter_def st_set_def JOIN_stable)

subsectionProgress: transient, ensures

lemma JOIN_transient:
     "i  I ==>
      (i  I. F(i))  transient(A)  (i  I. programify(F(i))  transient(A))"
apply (auto simp add: transient_def JOIN_def)
apply (unfold st_set_def)
apply (drule_tac [2] x = act in bspec)
apply (auto dest: Acts_type [THEN subsetD])
done

lemma Join_transient [iff]:
     "F  G  transient(A) 
      (programify(F)  transient(A) | programify(G)  transient(A))"
apply (auto simp add: transient_def Join_def Int_Un_distrib2)
done

lemma Join_transient_I1: "F  transient(A) ==> F  G  transient(A)"
by (simp add: Join_transient transientD2)


lemma Join_transient_I2: "G  transient(A) ==> F  G  transient(A)"
by (simp add: Join_transient transientD2)

(*If I=0 it degenerates to (SKIP ∈ A ensures B) = False, i.e. to ~(A⊆B) *)
lemma JOIN_ensures:
     "i  I ==>
      (i  I. F(i))  A ensures B 
      ((i  I. programify(F(i))  (A-B) co (A  B)) &
      (i  I. programify(F(i))  A ensures B))"
by (auto simp add: ensures_def JOIN_constrains JOIN_transient)


lemma Join_ensures:
     "F  G  A ensures B  
      (programify(F)  (A-B) co (A  B) & programify(G)  (A-B) co (A  B) &
       (programify(F)   transient (A-B) | programify(G)  transient (A-B)))"

apply (unfold ensures_def)
apply (auto simp add: Join_transient)
done

lemma stable_Join_constrains:
    "[| F  stable(A);  G  A co A' |]
     ==> F  G  A co A'"
apply (unfold stable_def constrains_def Join_def st_set_def)
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = G in Acts_type, force)
done

(*Premise for G cannot use Always because  F ∈ Stable A  is
   weaker than G ∈ stable A *)
lemma stable_Join_Always1:
     "[| F  stable(A);  G  invariant(A) |] ==> F  G  Always(A)"
apply (subgoal_tac "F  program & G  program & st_set (A) ")
prefer 2 apply (blast dest: invariantD2 stableD2)
apply (simp add: Always_def invariant_def initially_def Stable_eq_stable)
apply (force intro: stable_Int)
done

(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
     "[| F  invariant(A);  G  stable(A) |] ==> F  G  Always(A)"
apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done



lemma stable_Join_ensures1:
     "[| F  stable(A);  G  A ensures B |] ==> F  G  A ensures B"
apply (subgoal_tac "F  program & G  program & st_set (A) ")
prefer 2 apply (blast dest: stableD2 ensures_type [THEN subsetD])
apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done


(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
     "[| F  A ensures B;  G  stable(A) |] ==> F  G  A ensures B"
apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done

subsectionThe ok and OK relations

lemma ok_SKIP1 [iff]: "SKIP ok F"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)

lemma ok_SKIP2 [iff]: "F ok SKIP"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)

lemma ok_Join_commute:
     "(F ok G & (F  G) ok H)  (G ok H & F ok (G  H))"
by (auto simp add: ok_def)

lemma ok_commute: "(F ok G) (G ok F)"
by (auto simp add: ok_def)

lemmas ok_sym = ok_commute [THEN iffD1]

lemma ok_iff_OK: "OK({<0,F>,<1,G>,<2,H>}, snd)  (F ok G & (F  G) ok H)"
by (simp add: ok_def Join_def OK_def Int_assoc cons_absorb
                 Int_Un_distrib2 Ball_def,  safe, force+)

lemma ok_Join_iff1 [iff]: "F ok (G  H)  (F ok G & F ok H)"
by (auto simp add: ok_def)

lemma ok_Join_iff2 [iff]: "(G  H) ok F  (G ok F & H ok F)"
by (auto simp add: ok_def)

(*useful?  Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F  G) ok H |] ==> F ok (G  H)"
by (auto simp add: ok_def)

lemma ok_JOIN_iff1 [iff]: "F ok JOIN(I,G)  (i  I. F ok G(i))"
by (force dest: Acts_type [THEN subsetD] elim!: not_emptyE simp add: ok_def)

lemma ok_JOIN_iff2 [iff]: "JOIN(I,G) ok F     (i  I. G(i) ok F)"
apply (auto elim!: not_emptyE simp add: ok_def)
apply (blast dest: Acts_type [THEN subsetD])
done

lemma OK_iff_ok: "OK(I,F)  (i  I. j  I-{i}. F(i) ok (F(j)))"
by (auto simp add: ok_def OK_def)

lemma OK_imp_ok: "[| OK(I,F); i  I; j  I; ij|] ==> F(i) ok F(j)"
by (auto simp add: OK_iff_ok)


lemma OK_0 [iff]: "OK(0,F)"
by (simp add: OK_def)

lemma OK_cons_iff:
     "OK(cons(i, I), F) 
      (i  I & OK(I, F)) | (iI & OK(I, F) & F(i) ok JOIN(I,F))"
apply (simp add: OK_iff_ok)
apply (blast intro: ok_sym)
done


subsectionAllowed

lemma Allowed_SKIP [simp]: "Allowed(SKIP) = program"
by (auto dest: Acts_type [THEN subsetD] simp add: Allowed_def)

lemma Allowed_Join [simp]:
     "Allowed(F  G) =
   Allowed(programify(F))  Allowed(programify(G))"
apply (auto simp add: Allowed_def)
done

lemma Allowed_JOIN [simp]:
     "i  I ==>
   Allowed(JOIN(I,F)) = (i  I. Allowed(programify(F(i))))"
apply (auto simp add: Allowed_def, blast)
done

lemma ok_iff_Allowed:
     "F ok G  (programify(F)  Allowed(programify(G)) &
   programify(G)  Allowed(programify(F)))"
by (simp add: ok_def Allowed_def)


lemma OK_iff_Allowed:
     "OK(I,F) 
  (i  I. j  I-{i}. programify(F(i))  Allowed(programify(F(j))))"
apply (auto simp add: OK_iff_ok ok_iff_Allowed)
done

subsectionsafety_prop, for reasoning about given instances of "ok"

lemma safety_prop_Acts_iff:
     "safety_prop(X) ==> (Acts(G)  cons(id(state), (F  X. Acts(F))))  (programify(G)  X)"
apply (simp (no_asm_use) add: safety_prop_def)
apply clarify
apply (case_tac "G ∈ program", simp_all, blast, safe)
prefer 2 apply force
apply (force simp add: programify_def)
done

lemma safety_prop_AllowedActs_iff_Allowed:
     "safety_prop(X) ==>
  (G  X. Acts(G))  AllowedActs(F)  (X  Allowed(programify(F)))"
apply (simp add: Allowed_def safety_prop_Acts_iff [THEN iff_sym]
                 safety_prop_def, blast)
done


lemma Allowed_eq:
     "safety_prop(X) ==> Allowed(mk_program(init, acts, F  X. Acts(F))) = X"
apply (subgoal_tac "cons (id (state), (RepFun (X, Acts))  Pow (state * state)) = (RepFun (X, Acts))")
apply (rule_tac [2] equalityI)
  apply (simp del: UN_simps add: Allowed_def safety_prop_Acts_iff safety_prop_def, auto)
apply (force dest: Acts_type [THEN subsetD] simp add: safety_prop_def)+
done

lemma def_prg_Allowed:
     "[| F == mk_program (init, acts, F  X. Acts(F)); safety_prop(X) |]
      ==> Allowed(F) = X"
by (simp add: Allowed_eq)

(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]:
     "safety_prop(A co B)  (A  B & st_set(A))"
by (simp add: safety_prop_def constrains_def st_set_def, blast)

(* To be used with resolution *)
lemma safety_prop_constrainsI [iff]:
     "[| AB; st_set(A) |] ==>safety_prop(A co B)"
by auto

lemma safety_prop_stable [iff]: "safety_prop(stable(A))  st_set(A)"
by (simp add: stable_def)

lemma safety_prop_stableI: "st_set(A) ==> safety_prop(stable(A))"
by auto

lemma safety_prop_Int [simp]:
     "[| safety_prop(X) ; safety_prop(Y) |] ==> safety_prop(X  Y)"
apply (simp add: safety_prop_def, safe, blast)
apply (drule_tac [2] B = "(RepFun (X  Y, Acts))" and C = "(RepFun (Y, Acts))" in subset_trans)
apply (drule_tac B = "(RepFun (X  Y, Acts))" and C = "(RepFun (X, Acts))" in subset_trans)
apply blast+
done

(* If I=0 the conclusion becomes safety_prop(0) which is false *)
lemma safety_prop_Inter:
  assumes major: "(!!i. i  I ==>safety_prop(X(i)))"
      and minor: "i  I"
  shows "safety_prop(i  I. X(i))"
apply (simp add: safety_prop_def)
apply (cut_tac minor, safe)
apply (simp (no_asm_use) add: Inter_iff)
apply clarify
apply (frule major)
apply (drule_tac [2] i = xa in major)
apply (frule_tac [4] i = xa in major)
apply (auto simp add: safety_prop_def)
apply (drule_tac B = "(RepFun ((RepFun (I, X)), Acts))" and C = "(RepFun (X (xa), Acts))" in subset_trans)
apply blast+
done

lemma def_UNION_ok_iff:
"[| F == mk_program(init,acts, G  X. Acts(G)); safety_prop(X) |]
      ==> F ok G  (programify(G)  X & acts  Pow(state*state)  AllowedActs(G))"
apply (unfold ok_def)
apply (drule_tac G = G in safety_prop_Acts_iff)
apply (cut_tac F = G in AllowedActs_type)
apply (cut_tac F = G in Acts_type, auto)
done

end