| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > 3eqtr4i | Unicode version | ||
| Description: Transitivity of equality. |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| 3eqtr4i.4 |
|
| Ref | Expression |
|---|---|
| 3eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.1 |
. . 3
| |
| 2 | 3eqtr4i.3 |
. . 3
| |
| 3 | 1, 2 | eqtypri 71 |
. 2
|
| 4 | 3eqtr4i.2 |
. . 3
| |
| 5 | 1, 4 | eqtypi 69 |
. . . . 5
|
| 6 | 3eqtr4i.4 |
. . . . 5
| |
| 7 | 5, 6 | eqtypri 71 |
. . . 4
|
| 8 | 7, 6 | eqcomi 70 |
. . 3
|
| 9 | 1, 4, 8 | eqtri 85 |
. 2
|
| 10 | 3, 2, 9 | eqtri 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: 3eqtr3i 87 oveq123 88 hbxfrf 97 leqf 169 exnal 188 |
| Copyright terms: Public domain | W3C validator |