| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exnal | Unicode version | ||
| Description: Theorem 19.14 of [Margaris] p. 90. |
| Ref | Expression |
|---|---|
| exmid.1 |
|
| Ref | Expression |
|---|---|
| exnal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 128 |
. . 3
| |
| 2 | wex 129 |
. . . . 5
| |
| 3 | exmid.1 |
. . . . . . 7
| |
| 4 | 1, 3 | wc 45 |
. . . . . 6
|
| 5 | 4 | wl 59 |
. . . . 5
|
| 6 | 2, 5 | wc 45 |
. . . 4
|
| 7 | 1, 6 | wc 45 |
. . 3
|
| 8 | 1, 7 | wc 45 |
. 2
|
| 9 | wal 124 |
. . . . 5
| |
| 10 | 1, 4 | wc 45 |
. . . . . 6
|
| 11 | 10 | wl 59 |
. . . . 5
|
| 12 | 9, 11 | wc 45 |
. . . 4
|
| 13 | 4 | alnex 174 |
. . . 4
|
| 14 | 12, 13 | eqcomi 70 |
. . 3
|
| 15 | 1, 7, 14 | ceq2 80 |
. 2
|
| 16 | 6 | notnot 187 |
. 2
|
| 17 | 3 | wl 59 |
. . . 4
|
| 18 | 9, 17 | wc 45 |
. . 3
|
| 19 | 3 | notnot 187 |
. . . . 5
|
| 20 | 3, 19 | leq 81 |
. . . 4
|
| 21 | 9, 17, 20 | ceq2 80 |
. . 3
|
| 22 | 1, 18, 21 | ceq2 80 |
. 2
|
| 23 | 8, 15, 16, 22 | 3eqtr4i 86 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 ax-ac 183 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 df-ex 121 df-or 122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |