| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > leqf | Unicode version | ||
| Description: Equality theorem for lambda abstraction, using bound variable instead of distinct variables. |
| Ref | Expression |
|---|---|
| leqf.1 |
|
| leqf.2 |
|
| leqf.3 |
|
| Ref | Expression |
|---|---|
| leqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leqf.1 |
. . . . 5
| |
| 2 | 1 | wl 59 |
. . . 4
|
| 3 | wv 58 |
. . . 4
| |
| 4 | 2, 3 | wc 45 |
. . 3
|
| 5 | 4 | wl 59 |
. 2
|
| 6 | leqf.2 |
. . . . 5
| |
| 7 | 6 | ax-cb1 29 |
. . . . . 6
|
| 8 | 1 | beta 82 |
. . . . . 6
|
| 9 | 7, 8 | a1i 28 |
. . . . 5
|
| 10 | 1, 6 | eqtypi 69 |
. . . . . . 7
|
| 11 | 10 | beta 82 |
. . . . . 6
|
| 12 | 7, 11 | a1i 28 |
. . . . 5
|
| 13 | 1, 6, 9, 12 | 3eqtr4i 86 |
. . . 4
|
| 14 | weq 38 |
. . . . 5
| |
| 15 | wv 58 |
. . . . 5
| |
| 16 | 10 | wl 59 |
. . . . . 6
|
| 17 | 16, 3 | wc 45 |
. . . . 5
|
| 18 | 14, 15 | ax-17 95 |
. . . . 5
|
| 19 | 1, 15 | ax-hbl1 93 |
. . . . . 6
|
| 20 | 3, 15 | ax-17 95 |
. . . . . 6
|
| 21 | 2, 3, 15, 19, 20 | hbc 100 |
. . . . 5
|
| 22 | 10, 15 | ax-hbl1 93 |
. . . . . 6
|
| 23 | 16, 3, 15, 22, 20 | hbc 100 |
. . . . 5
|
| 24 | 14, 4, 15, 17, 18, 21, 23 | hbov 101 |
. . . 4
|
| 25 | leqf.3 |
. . . 4
| |
| 26 | wv 58 |
. . . . . 6
| |
| 27 | 2, 26 | wc 45 |
. . . . 5
|
| 28 | 16, 26 | wc 45 |
. . . . 5
|
| 29 | 26, 3 | weqi 68 |
. . . . . . 7
|
| 30 | 29 | id 25 |
. . . . . 6
|
| 31 | 2, 26, 30 | ceq2 80 |
. . . . 5
|
| 32 | 16, 26, 30 | ceq2 80 |
. . . . 5
|
| 33 | 14, 27, 28, 31, 32 | oveq12 90 |
. . . 4
|
| 34 | 29, 7 | eqid 73 |
. . . 4
|
| 35 | 13, 24, 25, 33, 34 | ax-inst 103 |
. . 3
|
| 36 | 4, 35 | leq 81 |
. 2
|
| 37 | 2 | eta 166 |
. . 3
|
| 38 | 7, 37 | a1i 28 |
. 2
|
| 39 | 16 | eta 166 |
. . 3
|
| 40 | 7, 39 | a1i 28 |
. 2
|
| 41 | 5, 36, 38, 40 | 3eqtr3i 87 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 |
| This theorem is referenced by: alrimi 170 axext 206 axrep 207 |
| Copyright terms: Public domain | W3C validator |