| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax2 | Unicode version | ||
| Description: Axiom Frege. Axiom A2 of [Margaris] p. 49. |
| Ref | Expression |
|---|---|
| ax1.1 |
|
| ax1.2 |
|
| ax2.3 |
|
| Ref | Expression |
|---|---|
| ax2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax2.3 |
. . . . . 6
| |
| 2 | ax1.2 |
. . . . . . 7
| |
| 3 | wim 127 |
. . . . . . . . . 10
| |
| 4 | ax1.1 |
. . . . . . . . . 10
| |
| 5 | 3, 2, 1 | wov 64 |
. . . . . . . . . 10
|
| 6 | 3, 4, 5 | wov 64 |
. . . . . . . . 9
|
| 7 | 3, 4, 2 | wov 64 |
. . . . . . . . 9
|
| 8 | 6, 7 | wct 44 |
. . . . . . . 8
|
| 9 | 8, 4 | simpr 23 |
. . . . . . 7
|
| 10 | 8, 4 | simpl 22 |
. . . . . . . 8
|
| 11 | 10 | simprd 36 |
. . . . . . 7
|
| 12 | 2, 9, 11 | mpd 146 |
. . . . . 6
|
| 13 | 10 | simpld 35 |
. . . . . . 7
|
| 14 | 5, 9, 13 | mpd 146 |
. . . . . 6
|
| 15 | 1, 12, 14 | mpd 146 |
. . . . 5
|
| 16 | 15 | ex 148 |
. . . 4
|
| 17 | 16 | ex 148 |
. . 3
|
| 18 | wtru 40 |
. . 3
| |
| 19 | 17, 18 | adantl 51 |
. 2
|
| 20 | 19 | ex 148 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |