| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax3 | Unicode version | ||
| Description: Axiom Transp. Axiom A3 of [Margaris] p. 49. |
| Ref | Expression |
|---|---|
| ax3.1 |
|
| ax3.2 |
|
| Ref | Expression |
|---|---|
| ax3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax3.1 |
. . . . 5
| |
| 2 | wnot 128 |
. . . . . 6
| |
| 3 | 2, 1 | wc 45 |
. . . . 5
|
| 4 | wim 127 |
. . . . . . . 8
| |
| 5 | ax3.2 |
. . . . . . . . 9
| |
| 6 | 2, 5 | wc 45 |
. . . . . . . 8
|
| 7 | 4, 3, 6 | wov 64 |
. . . . . . 7
|
| 8 | 7, 5 | wct 44 |
. . . . . 6
|
| 9 | 1 | exmid 186 |
. . . . . 6
|
| 10 | 8, 9 | a1i 28 |
. . . . 5
|
| 11 | 10 | ax-cb1 29 |
. . . . . 6
|
| 12 | 11, 1 | simpr 23 |
. . . . 5
|
| 13 | wfal 125 |
. . . . . . . 8
| |
| 14 | 7 | id 25 |
. . . . . . . . . 10
|
| 15 | 3, 6, 14 | imp 147 |
. . . . . . . . 9
|
| 16 | 15 | ax-cb1 29 |
. . . . . . . . . 10
|
| 17 | 5 | notval 135 |
. . . . . . . . . 10
|
| 18 | 16, 17 | a1i 28 |
. . . . . . . . 9
|
| 19 | 15, 18 | mpbi 72 |
. . . . . . . 8
|
| 20 | 5, 13, 19 | imp 147 |
. . . . . . 7
|
| 21 | 20 | an32s 55 |
. . . . . 6
|
| 22 | 1 | pm2.21 143 |
. . . . . 6
|
| 23 | 21, 22 | syl 16 |
. . . . 5
|
| 24 | 1, 3, 1, 10, 12, 23 | ecase 153 |
. . . 4
|
| 25 | 24 | ex 148 |
. . 3
|
| 26 | wtru 40 |
. . 3
| |
| 27 | 25, 26 | adantl 51 |
. 2
|
| 28 | 27 | ex 148 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-ac 183 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 df-or 122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |