| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > mpd | Unicode version | ||
| Description: Modus ponens. |
| Ref | Expression |
|---|---|
| mp.1 |
|
| mp.2 |
|
| mp.3 |
|
| Ref | Expression |
|---|---|
| mpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp.2 |
. . . 4
| |
| 2 | mp.3 |
. . . . 5
| |
| 3 | 1 | ax-cb1 29 |
. . . . . 6
|
| 4 | 1 | ax-cb2 30 |
. . . . . . 7
|
| 5 | mp.1 |
. . . . . . 7
| |
| 6 | 4, 5 | imval 136 |
. . . . . 6
|
| 7 | 3, 6 | a1i 28 |
. . . . 5
|
| 8 | 2, 7 | mpbi 72 |
. . . 4
|
| 9 | 1, 8 | mpbir 77 |
. . 3
|
| 10 | 4, 5 | dfan2 144 |
. . . 4
|
| 11 | 3, 10 | a1i 28 |
. . 3
|
| 12 | 9, 11 | mpbi 72 |
. 2
|
| 13 | 12 | simprd 36 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
| This theorem is referenced by: imp 147 notval2 149 notnot1 150 ecase 153 olc 154 orc 155 exlimdv2 156 ax4e 158 exlimd 171 ac 184 exmid 186 ax2 191 axmp 193 ax5 194 ax11 201 |
| Copyright terms: Public domain | W3C validator |