| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax6 | Unicode version | ||
| Description: Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113. |
| Ref | Expression |
|---|---|
| ax6.1 |
|
| Ref | Expression |
|---|---|
| ax6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 128 |
. . 3
| |
| 2 | wal 124 |
. . . 4
| |
| 3 | ax6.1 |
. . . . 5
| |
| 4 | 3 | wl 59 |
. . . 4
|
| 5 | 2, 4 | wc 45 |
. . 3
|
| 6 | 1, 5 | wc 45 |
. 2
|
| 7 | wv 58 |
. . 3
| |
| 8 | 1, 7 | ax-17 95 |
. . 3
|
| 9 | 2, 7 | ax-17 95 |
. . . 4
|
| 10 | 3, 7 | ax-hbl1 93 |
. . . 4
|
| 11 | 2, 4, 7, 9, 10 | hbc 100 |
. . 3
|
| 12 | 1, 5, 7, 8, 11 | hbc 100 |
. 2
|
| 13 | 6, 12 | isfree 176 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |