| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax5 | Unicode version | ||
| Description: Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. |
| Ref | Expression |
|---|---|
| ax5.1 |
|
| ax5.2 |
|
| Ref | Expression |
|---|---|
| ax5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax5.2 |
. . . . . 6
| |
| 2 | ax5.1 |
. . . . . . . 8
| |
| 3 | 2 | ax4 140 |
. . . . . . 7
|
| 4 | wal 124 |
. . . . . . . 8
| |
| 5 | wim 127 |
. . . . . . . . . 10
| |
| 6 | 5, 2, 1 | wov 64 |
. . . . . . . . 9
|
| 7 | 6 | wl 59 |
. . . . . . . 8
|
| 8 | 4, 7 | wc 45 |
. . . . . . 7
|
| 9 | 3, 8 | adantl 51 |
. . . . . 6
|
| 10 | 6 | ax4 140 |
. . . . . . 7
|
| 11 | 3 | ax-cb1 29 |
. . . . . . 7
|
| 12 | 10, 11 | adantr 50 |
. . . . . 6
|
| 13 | 1, 9, 12 | mpd 146 |
. . . . 5
|
| 14 | wv 58 |
. . . . . 6
| |
| 15 | 4, 14 | ax-17 95 |
. . . . . . 7
|
| 16 | 6, 14 | ax-hbl1 93 |
. . . . . . 7
|
| 17 | 4, 7, 14, 15, 16 | hbc 100 |
. . . . . 6
|
| 18 | 2 | wl 59 |
. . . . . . 7
|
| 19 | 2, 14 | ax-hbl1 93 |
. . . . . . 7
|
| 20 | 4, 18, 14, 15, 19 | hbc 100 |
. . . . . 6
|
| 21 | 8, 14, 11, 17, 20 | hbct 145 |
. . . . 5
|
| 22 | 13, 21 | alrimi 170 |
. . . 4
|
| 23 | 22 | ex 148 |
. . 3
|
| 24 | wtru 40 |
. . 3
| |
| 25 | 23, 24 | adantl 51 |
. 2
|
| 26 | 25 | ex 148 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 |
| This theorem is referenced by: ax11 201 |
| Copyright terms: Public domain | W3C validator |