| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ceq12 | Unicode version | ||
| Description: Equality theorem for combination. |
| Ref | Expression |
|---|---|
| ceq12.1 |
|
| ceq12.2 |
|
| ceq12.3 |
|
| ceq12.4 |
|
| Ref | Expression |
|---|---|
| ceq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weq 38 |
. 2
| |
| 2 | ceq12.1 |
. . 3
| |
| 3 | ceq12.2 |
. . 3
| |
| 4 | 2, 3 | wc 45 |
. 2
|
| 5 | ceq12.3 |
. . . 4
| |
| 6 | 2, 5 | eqtypi 69 |
. . 3
|
| 7 | ceq12.4 |
. . . 4
| |
| 8 | 3, 7 | eqtypi 69 |
. . 3
|
| 9 | 6, 8 | wc 45 |
. 2
|
| 10 | weq 38 |
. . . 4
| |
| 11 | 10, 2, 6, 5 | dfov1 66 |
. . 3
|
| 12 | weq 38 |
. . . 4
| |
| 13 | 12, 3, 8, 7 | dfov1 66 |
. . 3
|
| 14 | 2, 6, 3, 8 | ax-ceq 46 |
. . 3
|
| 15 | 11, 13, 14 | syl2anc 19 |
. 2
|
| 16 | 1, 4, 9, 15 | dfov2 67 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: ceq1 79 ceq2 80 oveq123 88 hbc 100 ac 184 |
| Copyright terms: Public domain | W3C validator |