| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > dfov2 | Unicode version | ||
| Description: Reverse direction of df-ov 65. |
| Ref | Expression |
|---|---|
| dfov1.1 |
|
| dfov1.2 |
|
| dfov1.3 |
|
| dfov2.4 |
|
| Ref | Expression |
|---|---|
| dfov2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfov1.1 |
. . 3
| |
| 2 | dfov1.2 |
. . 3
| |
| 3 | dfov1.3 |
. . 3
| |
| 4 | 1, 2, 3 | wov 64 |
. 2
|
| 5 | dfov2.4 |
. 2
| |
| 6 | 5 | ax-cb1 29 |
. . 3
|
| 7 | 1, 2, 3 | df-ov 65 |
. . 3
|
| 8 | 6, 7 | a1i 28 |
. 2
|
| 9 | 4, 5, 8 | mpbirx 48 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: eqcomi 70 eqid 73 ded 74 ceq12 78 leq 81 beta 82 distrc 83 distrl 84 eqtri 85 oveq123 88 hbov 101 ovl 107 |
| Copyright terms: Public domain | W3C validator |