| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > cla4ev | Unicode version | ||
| Description: Existential introduction. |
| Ref | Expression |
|---|---|
| cla4ev.1 |
|
| cla4ev.2 |
|
| cla4ev.3 |
|
| Ref | Expression |
|---|---|
| cla4ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cla4ev.1 |
. . . . 5
| |
| 2 | cla4ev.3 |
. . . . 5
| |
| 3 | 1, 2 | eqtypi 69 |
. . . 4
|
| 4 | 3 | id 25 |
. . 3
|
| 5 | cla4ev.2 |
. . . . 5
| |
| 6 | 1, 5, 2 | cl 106 |
. . . 4
|
| 7 | 3, 6 | a1i 28 |
. . 3
|
| 8 | 4, 7 | mpbir 77 |
. 2
|
| 9 | 1 | wl 59 |
. . 3
|
| 10 | 9, 5 | ax4e 158 |
. 2
|
| 11 | 8, 10 | syl 16 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-ex 121 |
| This theorem is referenced by: axpow 208 axun 209 |
| Copyright terms: Public domain | W3C validator |