| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax4e | Unicode version | ||
| Description: Existential introduction. |
| Ref | Expression |
|---|---|
| ax4e.1 |
|
| ax4e.2 |
|
| Ref | Expression |
|---|---|
| ax4e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wv 58 |
. . . . 5
| |
| 2 | ax4e.1 |
. . . . . . 7
| |
| 3 | ax4e.2 |
. . . . . . 7
| |
| 4 | 2, 3 | wc 45 |
. . . . . 6
|
| 5 | wal 124 |
. . . . . . 7
| |
| 6 | wim 127 |
. . . . . . . . 9
| |
| 7 | wv 58 |
. . . . . . . . . 10
| |
| 8 | 2, 7 | wc 45 |
. . . . . . . . 9
|
| 9 | 6, 8, 1 | wov 64 |
. . . . . . . 8
|
| 10 | 9 | wl 59 |
. . . . . . 7
|
| 11 | 5, 10 | wc 45 |
. . . . . 6
|
| 12 | 4, 11 | simpl 22 |
. . . . 5
|
| 13 | 7, 3 | weqi 68 |
. . . . . . . . . 10
|
| 14 | 13 | id 25 |
. . . . . . . . 9
|
| 15 | 2, 7, 14 | ceq2 80 |
. . . . . . . 8
|
| 16 | 6, 8, 1, 15 | oveq1 89 |
. . . . . . 7
|
| 17 | 9, 3, 16 | cla4v 142 |
. . . . . 6
|
| 18 | 17, 4 | adantl 51 |
. . . . 5
|
| 19 | 1, 12, 18 | mpd 146 |
. . . 4
|
| 20 | 19 | ex 148 |
. . 3
|
| 21 | 20 | alrimiv 141 |
. 2
|
| 22 | 2 | exval 133 |
. . 3
|
| 23 | 4, 22 | a1i 28 |
. 2
|
| 24 | 21, 23 | mpbir 77 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-ex 121 |
| This theorem is referenced by: cla4ev 159 19.8a 160 dfex2 185 axrep 207 |
| Copyright terms: Public domain | W3C validator |