| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > cl | Unicode version | ||
| Description: Evaluate a lambda expression. |
| Ref | Expression |
|---|---|
| cl.1 |
|
| cl.2 |
|
| cl.3 |
|
| Ref | Expression |
|---|---|
| cl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cl.1 |
. 2
| |
| 2 | cl.2 |
. 2
| |
| 3 | cl.3 |
. 2
| |
| 4 | 1, 3 | eqtypi 69 |
. . 3
|
| 5 | wv 58 |
. . 3
| |
| 6 | 4, 5 | ax-17 95 |
. 2
|
| 7 | 2, 5 | ax-17 95 |
. 2
|
| 8 | 1, 2, 3, 6, 7 | clf 105 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
kc 5 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: ovl 107 alval 132 exval 133 euval 134 notval 135 cla4v 142 dfan2 144 cla4ev 159 exmid 186 axpow 208 |
| Copyright terms: Public domain | W3C validator |