| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| con2d.2 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . . 5
| |
| 2 | wfal 125 |
. . . . 5
| |
| 3 | con2d.2 |
. . . . . 6
| |
| 4 | 3 | ax-cb1 29 |
. . . . . . 7
|
| 5 | 1 | notval 135 |
. . . . . . 7
|
| 6 | 4, 5 | a1i 28 |
. . . . . 6
|
| 7 | 3, 6 | mpbi 72 |
. . . . 5
|
| 8 | 1, 2, 7 | imp 147 |
. . . 4
|
| 9 | 8 | an32s 55 |
. . 3
|
| 10 | 9 | ex 148 |
. 2
|
| 11 | 4 | wctl 31 |
. . . 4
|
| 12 | 11, 1 | wct 44 |
. . 3
|
| 13 | 4 | wctr 32 |
. . . 4
|
| 14 | 13 | notval 135 |
. . 3
|
| 15 | 12, 14 | a1i 28 |
. 2
|
| 16 | 10, 15 | mpbir 77 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: con3d 152 exnal1 175 |
| Copyright terms: Public domain | W3C validator |