| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > notval | Unicode version | ||
| Description: Value of negation. |
| Ref | Expression |
|---|---|
| imval.1 |
|
| Ref | Expression |
|---|---|
| notval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 128 |
. . 3
| |
| 2 | imval.1 |
. . 3
| |
| 3 | 1, 2 | wc 45 |
. 2
|
| 4 | df-not 120 |
. . 3
| |
| 5 | 1, 2, 4 | ceq1 79 |
. 2
|
| 6 | wim 127 |
. . . 4
| |
| 7 | wv 58 |
. . . 4
| |
| 8 | wfal 125 |
. . . 4
| |
| 9 | 6, 7, 8 | wov 64 |
. . 3
|
| 10 | 7, 2 | weqi 68 |
. . . . 5
|
| 11 | 10 | id 25 |
. . . 4
|
| 12 | 6, 7, 8, 11 | oveq1 89 |
. . 3
|
| 13 | 9, 2, 12 | cl 106 |
. 2
|
| 14 | 3, 5, 13 | eqtri 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: notval2 149 notnot1 150 con2d 151 alnex 174 exmid 186 notnot 187 ax3 192 |
| Copyright terms: Public domain | W3C validator |