| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > imp | Unicode version | ||
| Description: Importation deduction. |
| Ref | Expression |
|---|---|
| imp.1 |
|
| imp.2 |
|
| imp.3 |
|
| Ref | Expression |
|---|---|
| imp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp.2 |
. 2
| |
| 2 | imp.3 |
. . . 4
| |
| 3 | 2 | ax-cb1 29 |
. . 3
|
| 4 | imp.1 |
. . 3
| |
| 5 | 3, 4 | simpr 23 |
. 2
|
| 6 | 2, 4 | adantr 50 |
. 2
|
| 7 | 1, 5, 6 | mpd 146 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
| This theorem is referenced by: con2d 151 exlimdv 157 alnex 174 notnot 187 ax3 192 |
| Copyright terms: Public domain | W3C validator |