| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exlimdv | Unicode version | ||
| Description: Existential elimination. |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdv.1 |
. . . . 5
| |
| 2 | 1 | ax-cb1 29 |
. . . 4
|
| 3 | 2 | wctr 32 |
. . 3
|
| 4 | 3 | wl 59 |
. 2
|
| 5 | wv 58 |
. . . 4
| |
| 6 | 4, 5 | wc 45 |
. . 3
|
| 7 | 1 | ax-cb2 30 |
. . 3
|
| 8 | wim 127 |
. . . . 5
| |
| 9 | 8, 6, 7 | wov 64 |
. . . 4
|
| 10 | 1 | ex 148 |
. . . 4
|
| 11 | wv 58 |
. . . . 5
| |
| 12 | 8, 11 | ax-17 95 |
. . . . 5
|
| 13 | 3, 11 | ax-hbl1 93 |
. . . . . 6
|
| 14 | 5, 11 | ax-17 95 |
. . . . . 6
|
| 15 | 4, 5, 11, 13, 14 | hbc 100 |
. . . . 5
|
| 16 | 7, 11 | ax-17 95 |
. . . . 5
|
| 17 | 8, 6, 11, 7, 12, 15, 16 | hbov 101 |
. . . 4
|
| 18 | wv 58 |
. . . . . . . 8
| |
| 19 | 18, 5 | weqi 68 |
. . . . . . 7
|
| 20 | 4, 18 | wc 45 |
. . . . . . . 8
|
| 21 | 3 | beta 82 |
. . . . . . . 8
|
| 22 | 20, 21 | eqcomi 70 |
. . . . . . 7
|
| 23 | 19, 22 | a1i 28 |
. . . . . 6
|
| 24 | 19 | id 25 |
. . . . . . 7
|
| 25 | 4, 18, 24 | ceq2 80 |
. . . . . 6
|
| 26 | 3, 23, 25 | eqtri 85 |
. . . . 5
|
| 27 | 8, 3, 7, 26 | oveq1 89 |
. . . 4
|
| 28 | 5, 9, 10, 17, 27 | insti 104 |
. . 3
|
| 29 | 6, 7, 28 | imp 147 |
. 2
|
| 30 | 4, 29 | exlimdv2 156 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-ex 121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |