| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > eqid | Unicode version | ||
| Description: Reflexivity of equality. |
| Ref | Expression |
|---|---|
| eqid.1 |
|
| eqid.2 |
|
| Ref | Expression |
|---|---|
| eqid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weq 38 |
. 2
| |
| 2 | eqid.2 |
. 2
| |
| 3 | eqid.1 |
. . 3
| |
| 4 | 2 | ax-refl 39 |
. . 3
|
| 5 | 3, 4 | a1i 28 |
. 2
|
| 6 | 1, 2, 2, 5 | dfov2 67 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: ceq1 79 ceq2 80 oveq1 89 oveq12 90 oveq2 91 oveq 92 insti 104 dfan2 144 leqf 169 ax9 199 axrep 207 axpow 208 |
| Copyright terms: Public domain | W3C validator |