| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > orc | Unicode version | ||
| Description: Or introduction. |
| Ref | Expression |
|---|---|
| olc.1 |
|
| olc.2 |
|
| Ref | Expression |
|---|---|
| orc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wim 127 |
. . . 4
| |
| 2 | olc.1 |
. . . . 5
| |
| 3 | wv 58 |
. . . . 5
| |
| 4 | 1, 2, 3 | wov 64 |
. . . 4
|
| 5 | olc.2 |
. . . . . 6
| |
| 6 | 1, 5, 3 | wov 64 |
. . . . 5
|
| 7 | 1, 6, 3 | wov 64 |
. . . 4
|
| 8 | 1, 4, 7 | wov 64 |
. . 3
|
| 9 | wtru 40 |
. . . 4
| |
| 10 | 2, 4 | simpl 22 |
. . . . . . . . 9
|
| 11 | 2, 4 | simpr 23 |
. . . . . . . . 9
|
| 12 | 3, 10, 11 | mpd 146 |
. . . . . . . 8
|
| 13 | 12, 6 | adantr 50 |
. . . . . . 7
|
| 14 | 13 | ex 148 |
. . . . . 6
|
| 15 | 14 | ex 148 |
. . . . 5
|
| 16 | 15 | eqtru 76 |
. . . 4
|
| 17 | 9, 16 | eqcomi 70 |
. . 3
|
| 18 | 8, 17 | leq 81 |
. 2
|
| 19 | wor 130 |
. . . . 5
| |
| 20 | 19, 2, 5 | wov 64 |
. . . 4
|
| 21 | 2, 5 | orval 137 |
. . . 4
|
| 22 | 8 | wl 59 |
. . . . 5
|
| 23 | 22 | alval 132 |
. . . 4
|
| 24 | 20, 21, 23 | eqtri 85 |
. . 3
|
| 25 | 2, 24 | a1i 28 |
. 2
|
| 26 | 18, 25 | mpbir 77 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-or 122 |
| This theorem is referenced by: exmid 186 |
| Copyright terms: Public domain | W3C validator |