| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > eqtru | Unicode version | ||
| Description: If a statement is provable, then it is equivalent to truth. |
| Ref | Expression |
|---|---|
| eqtru.1 |
|
| Ref | Expression |
|---|---|
| eqtru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtru.1 |
. . 3
| |
| 2 | wtru 40 |
. . 3
| |
| 3 | 1, 2 | adantr 50 |
. 2
|
| 4 | 1 | ax-cb1 29 |
. . . 4
|
| 5 | 1 | ax-cb2 30 |
. . . 4
|
| 6 | 4, 5 | wct 44 |
. . 3
|
| 7 | tru 41 |
. . 3
| |
| 8 | 6, 7 | a1i 28 |
. 2
|
| 9 | 3, 8 | ded 74 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: hbth 99 alrimiv 141 dfan2 144 olc 154 orc 155 alrimi 170 exmid 186 ax9 199 |
| Copyright terms: Public domain | W3C validator |