ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23 Unicode version

Theorem 19.23 1608
Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.23.1  |-  F/ x ps
Assertion
Ref Expression
19.23  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )

Proof of Theorem 19.23
StepHypRef Expression
1 19.23.1 . 2  |-  F/ x ps
2 19.23t 1607 . 2  |-  ( F/ x ps  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
31, 2ax-mp 7 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282   F/wnf 1389   E.wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  equsal  1655  r19.3rm  3330  ralidm  3341
  Copyright terms: Public domain W3C validator