| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralidm | Unicode version | ||
| Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2397 |
. . 3
| |
| 2 | anidm 388 |
. . . 4
| |
| 3 | rsp2 2413 |
. . . 4
| |
| 4 | 2, 3 | syl5bir 151 |
. . 3
|
| 5 | 1, 4 | ralrimi 2432 |
. 2
|
| 6 | ax-1 5 |
. . . 4
| |
| 7 | nfra1 2397 |
. . . . 5
| |
| 8 | 7 | 19.23 1608 |
. . . 4
|
| 9 | 6, 8 | sylibr 132 |
. . 3
|
| 10 | df-ral 2353 |
. . 3
| |
| 11 | 9, 10 | sylibr 132 |
. 2
|
| 12 | 5, 11 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
| This theorem is referenced by: issref 4727 cnvpom 4880 |
| Copyright terms: Public domain | W3C validator |