| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exsb | Unicode version | ||
| Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2exsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsb 1925 |
. . . 4
| |
| 2 | 1 | exbii 1536 |
. . 3
|
| 3 | excom 1594 |
. . 3
| |
| 4 | 2, 3 | bitri 182 |
. 2
|
| 5 | exsb 1925 |
. . . 4
| |
| 6 | impexp 259 |
. . . . . . . 8
| |
| 7 | 6 | albii 1399 |
. . . . . . 7
|
| 8 | 19.21v 1794 |
. . . . . . 7
| |
| 9 | 7, 8 | bitr2i 183 |
. . . . . 6
|
| 10 | 9 | albii 1399 |
. . . . 5
|
| 11 | 10 | exbii 1536 |
. . . 4
|
| 12 | 5, 11 | bitri 182 |
. . 3
|
| 13 | 12 | exbii 1536 |
. 2
|
| 14 | excom 1594 |
. 2
| |
| 15 | 4, 13, 14 | 3bitri 204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |