![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 182 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomi 130 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3bitrri 205 3bitr2ri 207 3bitr4ri 211 nan 658 pm4.15 822 3or6 1254 sbal1yz 1918 2exsb 1926 moanim 2015 2eu4 2034 cvjust 2076 abbi 2192 sbc8g 2822 ss2rab 3070 unass 3129 unss 3146 undi 3212 difindiss 3218 disj 3292 unopab 3857 eqvinop 3998 pwexb 4224 dmun 4560 reldm0 4571 dmres 4650 imadmrn 4698 ssrnres 4783 dmsnm 4806 coundi 4842 coundir 4843 cnvpom 4880 xpcom 4884 fun11 4986 fununi 4987 funcnvuni 4988 isarep1 5005 fsn 5356 fconstfvm 5400 eufnfv 5410 acexmidlem2 5529 eloprabga 5611 funoprabg 5620 ralrnmpt2 5635 rexrnmpt2 5636 oprabrexex2 5777 dfer2 6130 euen1b 6306 xpsnen 6318 rexuz3 9876 |
Copyright terms: Public domain | W3C validator |