ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8re Unicode version

Theorem 8re 8124
Description: The number 8 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
8re  |-  8  e.  RR

Proof of Theorem 8re
StepHypRef Expression
1 df-8 8104 . 2  |-  8  =  ( 7  +  1 )
2 7re 8122 . . 3  |-  7  e.  RR
3 1re 7118 . . 3  |-  1  e.  RR
42, 3readdcli 7132 . 2  |-  ( 7  +  1 )  e.  RR
51, 4eqeltri 2151 1  |-  8  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1433  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984   7c7 8094   8c8 8095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063  ax-1re 7070  ax-addrcl 7073
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104
This theorem is referenced by:  8cn  8125  9re  8126  9pos  8143  6lt8  8223  5lt8  8224  4lt8  8225  3lt8  8226  2lt8  8227  1lt8  8228  8lt9  8229  7lt9  8230  8th4div3  8250  8lt10  8608  7lt10  8609
  Copyright terms: Public domain W3C validator