HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-5 8101 Define the number 5. (Contributed by NM, 27-May-1999.)
 |-  5  =  ( 4  +  1 )
 
Definitiondf-6 8102 Define the number 6. (Contributed by NM, 27-May-1999.)
 |-  6  =  ( 5  +  1 )
 
Definitiondf-7 8103 Define the number 7. (Contributed by NM, 27-May-1999.)
 |-  7  =  ( 6  +  1 )
 
Definitiondf-8 8104 Define the number 8. (Contributed by NM, 27-May-1999.)
 |-  8  =  ( 7  +  1 )
 
Definitiondf-9 8105 Define the number 9. (Contributed by NM, 27-May-1999.)
 |-  9  =  ( 8  +  1 )
 
Theorem0ne1 8106  0  =/=  1 (common case). See aso 1ap0 7690. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  =/=  1
 
Theorem1ne0 8107  1  =/=  0. See aso 1ap0 7690. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  1  =/=  0
 
Theorem1m1e0 8108  ( 1  -  1 )  =  0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  ( 1  -  1
 )  =  0
 
Theorem2re 8109 The number 2 is real. (Contributed by NM, 27-May-1999.)
 |-  2  e.  RR
 
Theorem2cn 8110 The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.)
 |-  2  e.  CC
 
Theorem2ex 8111 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  2  e.  _V
 
Theorem2cnd 8112 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ph  ->  2  e.  CC )
 
Theorem3re 8113 The number 3 is real. (Contributed by NM, 27-May-1999.)
 |-  3  e.  RR
 
Theorem3cn 8114 The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
 |-  3  e.  CC
 
Theorem3ex 8115 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  3  e.  _V
 
Theorem4re 8116 The number 4 is real. (Contributed by NM, 27-May-1999.)
 |-  4  e.  RR
 
Theorem4cn 8117 The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  4  e.  CC
 
Theorem5re 8118 The number 5 is real. (Contributed by NM, 27-May-1999.)
 |-  5  e.  RR
 
Theorem5cn 8119 The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  5  e.  CC
 
Theorem6re 8120 The number 6 is real. (Contributed by NM, 27-May-1999.)
 |-  6  e.  RR
 
Theorem6cn 8121 The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  6  e.  CC
 
Theorem7re 8122 The number 7 is real. (Contributed by NM, 27-May-1999.)
 |-  7  e.  RR
 
Theorem7cn 8123 The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  7  e.  CC
 
Theorem8re 8124 The number 8 is real. (Contributed by NM, 27-May-1999.)
 |-  8  e.  RR
 
Theorem8cn 8125 The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  8  e.  CC
 
Theorem9re 8126 The number 9 is real. (Contributed by NM, 27-May-1999.)
 |-  9  e.  RR
 
Theorem9cn 8127 The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  9  e.  CC
 
Theorem0le0 8128 Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  0  <_  0
 
Theorem0le2 8129 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
 |-  0  <_  2
 
Theorem2pos 8130 The number 2 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  2
 
Theorem2ne0 8131 The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
 |-  2  =/=  0
 
Theorem2ap0 8132 The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
 |-  2 #  0
 
Theorem3pos 8133 The number 3 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  3
 
Theorem3ne0 8134 The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  3  =/=  0
 
Theorem3ap0 8135 The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  3 #  0
 
Theorem4pos 8136 The number 4 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  4
 
Theorem4ne0 8137 The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.)
 |-  4  =/=  0
 
Theorem4ap0 8138 The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  4 #  0
 
Theorem5pos 8139 The number 5 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  5
 
Theorem6pos 8140 The number 6 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  6
 
Theorem7pos 8141 The number 7 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  7
 
Theorem8pos 8142 The number 8 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  8
 
Theorem9pos 8143 The number 9 is positive. (Contributed by NM, 27-May-1999.)
 |-  0  <  9
 
3.4.4  Some properties of specific numbers

This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10.

 
Theoremneg1cn 8144 -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  -u 1  e.  CC
 
Theoremneg1rr 8145 -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
 |-  -u 1  e.  RR
 
Theoremneg1ne0 8146 -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u 1  =/=  0
 
Theoremneg1lt0 8147 -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u 1  <  0
 
Theoremneg1ap0 8148 -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  -u 1 #  0
 
Theoremnegneg1e1 8149  -u -u 1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u -u 1  =  1
 
Theorem1pneg1e0 8150  1  +  -u 1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 1  +  -u 1
 )  =  0
 
Theorem0m0e0 8151 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 0  -  0
 )  =  0
 
Theorem1m0e1 8152 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 1  -  0
 )  =  1
 
Theorem0p1e1 8153 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  ( 0  +  1 )  =  1
 
Theorem1p0e1 8154 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 1  +  0 )  =  1
 
Theorem1p1e2 8155 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
 |-  ( 1  +  1 )  =  2
 
Theorem2m1e1 8156 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 8177. (Contributed by David A. Wheeler, 4-Jan-2017.)
 |-  ( 2  -  1
 )  =  1
 
Theorem1e2m1 8157 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  1  =  ( 2  -  1 )
 
Theorem3m1e2 8158 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.)
 |-  ( 3  -  1
 )  =  2
 
Theorem2p2e4 8159 Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: http://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
 |-  ( 2  +  2 )  =  4
 
Theorem2times 8160 Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
 |-  ( A  e.  CC  ->  ( 2  x.  A )  =  ( A  +  A ) )
 
Theoremtimes2 8161 A number times 2. (Contributed by NM, 16-Oct-2007.)
 |-  ( A  e.  CC  ->  ( A  x.  2
 )  =  ( A  +  A ) )
 
Theorem2timesi 8162 Two times a number. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( 2  x.  A )  =  ( A  +  A )
 
Theoremtimes2i 8163 A number times 2. (Contributed by NM, 11-May-2004.)
 |-  A  e.  CC   =>    |-  ( A  x.  2 )  =  ( A  +  A )
 
Theorem2div2e1 8164 2 divided by 2 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 2  /  2
 )  =  1
 
Theorem2p1e3 8165 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 2  +  1 )  =  3
 
Theorem1p2e3 8166 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 1  +  2 )  =  3
 
Theorem3p1e4 8167 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 3  +  1 )  =  4
 
Theorem4p1e5 8168 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 4  +  1 )  =  5
 
Theorem5p1e6 8169 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 5  +  1 )  =  6
 
Theorem6p1e7 8170 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 6  +  1 )  =  7
 
Theorem7p1e8 8171 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 7  +  1 )  =  8
 
Theorem8p1e9 8172 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
 |-  ( 8  +  1 )  =  9
 
Theorem3p2e5 8173 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
 |-  ( 3  +  2 )  =  5
 
Theorem3p3e6 8174 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
 |-  ( 3  +  3 )  =  6
 
Theorem4p2e6 8175 4 + 2 = 6. (Contributed by NM, 11-May-2004.)
 |-  ( 4  +  2 )  =  6
 
Theorem4p3e7 8176 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
 |-  ( 4  +  3 )  =  7
 
Theorem4p4e8 8177 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
 |-  ( 4  +  4 )  =  8
 
Theorem5p2e7 8178 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
 |-  ( 5  +  2 )  =  7
 
Theorem5p3e8 8179 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
 |-  ( 5  +  3 )  =  8
 
Theorem5p4e9 8180 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
 |-  ( 5  +  4 )  =  9
 
Theorem6p2e8 8181 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
 |-  ( 6  +  2 )  =  8
 
Theorem6p3e9 8182 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
 |-  ( 6  +  3 )  =  9
 
Theorem7p2e9 8183 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
 |-  ( 7  +  2 )  =  9
 
Theorem1t1e1 8184 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  ( 1  x.  1
 )  =  1
 
Theorem2t1e2 8185 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( 2  x.  1
 )  =  2
 
Theorem2t2e4 8186 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.)
 |-  ( 2  x.  2
 )  =  4
 
Theorem3t1e3 8187 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 3  x.  1
 )  =  3
 
Theorem3t2e6 8188 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.)
 |-  ( 3  x.  2
 )  =  6
 
Theorem3t3e9 8189 3 times 3 equals 9. (Contributed by NM, 11-May-2004.)
 |-  ( 3  x.  3
 )  =  9
 
Theorem4t2e8 8190 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.)
 |-  ( 4  x.  2
 )  =  8
 
Theorem2t0e0 8191 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 2  x.  0
 )  =  0
 
Theorem4d2e2 8192 One half of four is two. (Contributed by NM, 3-Sep-1999.)
 |-  ( 4  /  2
 )  =  2
 
Theorem2nn 8193 2 is a positive integer. (Contributed by NM, 20-Aug-2001.)
 |-  2  e.  NN
 
Theorem3nn 8194 3 is a positive integer. (Contributed by NM, 8-Jan-2006.)
 |-  3  e.  NN
 
Theorem4nn 8195 4 is a positive integer. (Contributed by NM, 8-Jan-2006.)
 |-  4  e.  NN
 
Theorem5nn 8196 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
 |-  5  e.  NN
 
Theorem6nn 8197 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
 |-  6  e.  NN
 
Theorem7nn 8198 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
 |-  7  e.  NN
 
Theorem8nn 8199 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
 |-  8  e.  NN
 
Theorem9nn 8200 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
 |-  9  e.  NN
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >