| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axsep2 | Unicode version | ||
| Description: A less restrictive
version of the Separation Scheme ax-sep 3896, where
variables |
| Ref | Expression |
|---|---|
| axsep2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. . . . . . 7
| |
| 2 | 1 | anbi1d 452 |
. . . . . 6
|
| 3 | anabs5 537 |
. . . . . 6
| |
| 4 | 2, 3 | syl6bb 194 |
. . . . 5
|
| 5 | 4 | bibi2d 230 |
. . . 4
|
| 6 | 5 | albidv 1745 |
. . 3
|
| 7 | 6 | exbidv 1746 |
. 2
|
| 8 | ax-sep 3896 |
. 2
| |
| 9 | 7, 8 | chvarv 1853 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 ax-sep 3896 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |