![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axsep2 | GIF version |
Description: A less restrictive version of the Separation Scheme ax-sep 3896, where variables 𝑥 and 𝑧 can both appear free in the wff 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version was derived from the more restrictive ax-sep 3896 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
axsep2 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2142 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧)) | |
2 | 1 | anbi1d 452 | . . . . . 6 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
3 | anabs5 537 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑧 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
4 | 2, 3 | syl6bb 194 | . . . . 5 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
5 | 4 | bibi2d 230 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
6 | 5 | albidv 1745 | . . 3 ⊢ (𝑤 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
7 | 6 | exbidv 1746 | . 2 ⊢ (𝑤 = 𝑧 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
8 | ax-sep 3896 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
9 | 7, 8 | chvarv 1853 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 ax-sep 3896 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |