Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfal Unicode version

Theorem bdfal 10624
Description: The truth value F. is bounded. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdfal  |- BOUNDED F.

Proof of Theorem bdfal
StepHypRef Expression
1 bdtru 10623 . . 3  |- BOUNDED T.
21ax-bdn 10608 . 2  |- BOUNDED  -. T.
3 df-fal 1290 . 2  |-  ( F.  <->  -. T.  )
42, 3bd0r 10616 1  |- BOUNDED F.
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1285   F. wfal 1289  BOUNDED wbd 10603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-bd0 10604  ax-bdim 10605  ax-bdn 10608  ax-bdeq 10611
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290
This theorem is referenced by:  bdnth  10625  bj-axemptylem  10683
  Copyright terms: Public domain W3C validator