Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem Unicode version

Theorem bj-axemptylem 10683
Description: Lemma for bj-axempty 10684 and bj-axempty2 10685. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3904 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem  |-  E. x A. y ( y  e.  x  -> F.  )
Distinct variable group:    x, y

Proof of Theorem bj-axemptylem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdfal 10624 . . 3  |- BOUNDED F.
21bdsep1 10676 . 2  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)
3 bi1 116 . . . 4  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  ->  ( y  e.  z  /\ F.  ) ) )
4 falimd 1299 . . . 4  |-  ( ( y  e.  z  /\ F.  )  -> F.  )
53, 4syl6 33 . . 3  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  -> F.  )
)
65alimi 1384 . 2  |-  ( A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  A. y
( y  e.  x  -> F.  ) )
72, 6eximii 1533 1  |-  E. x A. y ( y  e.  x  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282   F. wfal 1289   E.wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467  ax-bd0 10604  ax-bdim 10605  ax-bdn 10608  ax-bdeq 10611  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290
This theorem is referenced by:  bj-axempty  10684  bj-axempty2  10685
  Copyright terms: Public domain W3C validator