ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc Unicode version

Theorem csbprc 3289
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem csbprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 2909 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 2823 . . . . . . 7  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 594 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43pm2.21d 581 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  -> F.  ) )
5 falim 1298 . . . . 5  |-  ( F. 
->  [. A  /  x ]. y  e.  B
)
64, 5impbid1 140 . . . 4  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  <-> F.  ) )
76abbidv 2196 . . 3  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  | F.  }
)
8 fal 1291 . . . 4  |-  -. F.
98abf 3287 . . 3  |-  { y  | F.  }  =  (/)
107, 9syl6eq 2129 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
111, 10syl5eq 2125 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1284   F. wfal 1289    e. wcel 1433   {cab 2067   _Vcvv 2601   [.wsbc 2815   [_csb 2908   (/)c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator