ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sum Unicode version

Definition df-sum 10191
Description: Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e. finite subsets of the upper integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 }  k means  1  +  2  + 
4  =  7, and  sum_ k  e.  NN  ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
df-sum  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
Distinct variable groups:    f, k, m, n, x    A, f, m, n, x    B, f, m, n, x
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 10190 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1283 . . . . . . . 8  class  m
7 cuz 8619 . . . . . . . 8  class  ZZ>=
86, 7cfv 4922 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 2973 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 caddc 6984 . . . . . . . 8  class  +
11 cc 6979 . . . . . . . 8  class  CC
12 vn . . . . . . . . 9  setvar  n
13 cz 8351 . . . . . . . . 9  class  ZZ
1412cv 1283 . . . . . . . . . . 11  class  n
1514, 1wcel 1433 . . . . . . . . . 10  wff  n  e.  A
163, 14, 2csb 2908 . . . . . . . . . 10  class  [_ n  /  k ]_ B
17 cc0 6981 . . . . . . . . . 10  class  0
1815, 16, 17cif 3351 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
1912, 13, 18cmpt 3839 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
2010, 11, 19, 6cseq 9431 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )
21 vx . . . . . . . 8  setvar  x
2221cv 1283 . . . . . . 7  class  x
23 cli 10117 . . . . . . 7  class  ~~>
2420, 22, 23wbr 3785 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x
259, 24wa 102 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )
2625, 5, 13wrex 2349 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )
27 c1 6982 . . . . . . . . 9  class  1
28 cfz 9029 . . . . . . . . 9  class  ...
2927, 6, 28co 5532 . . . . . . . 8  class  ( 1 ... m )
30 vf . . . . . . . . 9  setvar  f
3130cv 1283 . . . . . . . 8  class  f
3229, 1, 31wf1o 4921 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
33 cn 8039 . . . . . . . . . . 11  class  NN
3414, 31cfv 4922 . . . . . . . . . . . 12  class  ( f `
 n )
353, 34, 2csb 2908 . . . . . . . . . . 11  class  [_ (
f `  n )  /  k ]_ B
3612, 33, 35cmpt 3839 . . . . . . . . . 10  class  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
3710, 11, 36, 27cseq 9431 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC )
386, 37cfv 4922 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
3922, 38wceq 1284 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ,  CC ) `
 m )
4032, 39wa 102 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ,  CC ) `
 m ) )
4140, 30wex 1421 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
4241, 5, 33wrex 2349 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
)
4326, 42wo 661 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) )
4443, 21cio 4885 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
) ) )
454, 44wceq 1284 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
Colors of variables: wff set class
This definition is referenced by:  sumeq1  10192  nfsum1  10193  nfsum  10194
  Copyright terms: Public domain W3C validator