ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum Unicode version

Theorem nfsum 10194
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 10191 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
2 nfcv 2219 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2219 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 2992 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
6 nfcv 2219 . . . . . . . 8  |-  F/_ x m
7 nfcv 2219 . . . . . . . 8  |-  F/_ x  +
83nfcri 2213 . . . . . . . . . 10  |-  F/ x  n  e.  A
9 nfcv 2219 . . . . . . . . . . 11  |-  F/_ x n
10 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
119, 10nfcsb 2940 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
12 nfcv 2219 . . . . . . . . . 10  |-  F/_ x
0
138, 11, 12nfif 3377 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
142, 13nfmpt 3870 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
15 nfcv 2219 . . . . . . . 8  |-  F/_ x CC
166, 7, 14, 15nfiseq 9438 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )
17 nfcv 2219 . . . . . . 7  |-  F/_ x  ~~>
18 nfcv 2219 . . . . . . 7  |-  F/_ x
z
1916, 17, 18nfbr 3829 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z
205, 19nfan 1497 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )
212, 20nfrexya 2405 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )
22 nfcv 2219 . . . . 5  |-  F/_ x NN
23 nfcv 2219 . . . . . . . 8  |-  F/_ x
f
24 nfcv 2219 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2523, 24, 3nff1o 5144 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
26 nfcv 2219 . . . . . . . . . 10  |-  F/_ x
1
27 nfcv 2219 . . . . . . . . . . . 12  |-  F/_ x
( f `  n
)
2827, 10nfcsb 2940 . . . . . . . . . . 11  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
2922, 28nfmpt 3870 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
3026, 7, 29, 15nfiseq 9438 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC )
3130, 6nffv 5205 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
3231nfeq2 2230 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
3325, 32nfan 1497 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3433nfex 1568 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3522, 34nfrexya 2405 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3621, 35nfor 1506 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
) )
3736nfiotaxy 4891 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
381, 37nfcxfr 2216 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 102    \/ wo 661    = wceq 1284   E.wex 1421    e. wcel 1433   F/_wnfc 2206   E.wrex 2349   [_csb 2908    C_ wss 2973   ifcif 3351   class class class wbr 3785    |-> cmpt 3839   iotacio 4885   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984   NNcn 8039   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431    ~~> cli 10117   sum_csu 10190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-iseq 9432  df-sum 10191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator