ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1 Unicode version

Theorem sumeq1 10192
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)

Proof of Theorem sumeq1
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3020 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 simpl 107 . . . . . . . . . . 11  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  A  =  B )
32eleq2d 2148 . . . . . . . . . 10  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  ( n  e.  A  <->  n  e.  B ) )
43ifbid 3370 . . . . . . . . 9  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )  =  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )
54mpteq2dva 3868 . . . . . . . 8  |-  ( A  =  B  ->  (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )
6 iseqeq3 9436 . . . . . . . 8  |-  ( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )  ->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
75, 6syl 14 . . . . . . 7  |-  ( A  =  B  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
87breq1d 3795 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x  <->  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) )
91, 8anbi12d 456 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  <->  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
109rexbidv 2369 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
11 f1oeq3 5139 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1211anbi1d 452 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1312exbidv 1746 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ,  CC ) `
 m ) ) ) )
1413rexbidv 2369 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1510, 14orbi12d 739 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ,  CC ) `  m )
) )  <->  ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) ) )
1615iotabidv 4908 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ,  CC ) `  m )
) ) )  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) ) )
17 df-sum 10191 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
18 df-sum 10191 . 2  |-  sum_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1916, 17, 183eqtr4g 2138 1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   [_csb 2908    C_ wss 2973   ifcif 3351   class class class wbr 3785    |-> cmpt 3839   iotacio 4885   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984   NNcn 8039   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431    ~~> cli 10117   sum_csu 10190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-iseq 9432  df-sum 10191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator