ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 Unicode version

Theorem df2o3 6037
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3  |-  2o  =  { (/) ,  1o }

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6025 . 2  |-  2o  =  suc  1o
2 df-suc 4126 . 2  |-  suc  1o  =  ( 1o  u.  { 1o } )
3 df1o2 6036 . . . 4  |-  1o  =  { (/) }
43uneq1i 3122 . . 3  |-  ( 1o  u.  { 1o }
)  =  ( {
(/) }  u.  { 1o } )
5 df-pr 3405 . . 3  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
64, 5eqtr4i 2104 . 2  |-  ( 1o  u.  { 1o }
)  =  { (/) ,  1o }
71, 2, 63eqtri 2105 1  |-  2o  =  { (/) ,  1o }
Colors of variables: wff set class
Syntax hints:    = wceq 1284    u. cun 2971   (/)c0 3251   {csn 3398   {cpr 3399   suc csuc 4120   1oc1o 6017   2oc2o 6018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-pr 3405  df-suc 4126  df-1o 6024  df-2o 6025
This theorem is referenced by:  df2o2  6038  2oconcl  6045  en2eqpr  6380
  Copyright terms: Public domain W3C validator