| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfbi3dc | Unicode version | ||
| Description: An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.) |
| Ref | Expression |
|---|---|
| dfbi3dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcn 779 |
. . . 4
| |
| 2 | xordc 1323 |
. . . . 5
| |
| 3 | 2 | imp 122 |
. . . 4
|
| 4 | 1, 3 | sylan2 280 |
. . 3
|
| 5 | pm5.18dc 810 |
. . . 4
| |
| 6 | 5 | imp 122 |
. . 3
|
| 7 | notnotbdc 799 |
. . . . . 6
| |
| 8 | 7 | anbi2d 451 |
. . . . 5
|
| 9 | ancom 262 |
. . . . . 6
| |
| 10 | 9 | a1i 9 |
. . . . 5
|
| 11 | 8, 10 | orbi12d 739 |
. . . 4
|
| 12 | 11 | adantl 271 |
. . 3
|
| 13 | 4, 6, 12 | 3bitr4d 218 |
. 2
|
| 14 | 13 | ex 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-xor 1307 |
| This theorem is referenced by: pm5.24dc 1329 |
| Copyright terms: Public domain | W3C validator |