Proof of Theorem bilukdc
| Step | Hyp | Ref
| Expression |
| 1 | | bicom 138 |
. . . . . 6
  
    |
| 2 | 1 | bibi1i 226 |
. . . . 5
  
        |
| 3 | | biassdc 1326 |
. . . . . 6
DECID DECID DECID
  

  
       |
| 4 | 3 | imp31 252 |
. . . . 5
  DECID
DECID  DECID
     
       |
| 5 | 2, 4 | syl5bb 190 |
. . . 4
  DECID
DECID  DECID
     
       |
| 6 | 5 | ancom1s 533 |
. . 3
  DECID
DECID  DECID
     
       |
| 7 | | dcbi 877 |
. . . . . 6
DECID DECID DECID      |
| 8 | 7 | imp 122 |
. . . . 5
 DECID DECID  DECID 
   |
| 9 | 8 | adantr 270 |
. . . 4
  DECID
DECID  DECID
 DECID     |
| 10 | | simpr 108 |
. . . 4
  DECID
DECID  DECID
 DECID   |
| 11 | | dcbi 877 |
. . . . . 6
DECID DECID DECID      |
| 12 | | dcbi 877 |
. . . . . 6
DECID DECID  
DECID 
      |
| 13 | 11, 12 | syl9 71 |
. . . . 5
DECID DECID DECID
DECID 
       |
| 14 | 13 | imp31 252 |
. . . 4
  DECID
DECID  DECID
 DECID  
    |
| 15 | | biassdc 1326 |
. . . 4
DECID  
DECID
DECID  
 
   
  
   
  
  
         |
| 16 | 9, 10, 14, 15 | syl3c 62 |
. . 3
  DECID
DECID  DECID
     
  
  
  
  
       |
| 17 | 6, 16 | mpbid 145 |
. 2
  DECID
DECID  DECID
  
  
       |
| 18 | | simplr 496 |
. . 3
  DECID
DECID  DECID
 DECID   |
| 19 | 11 | imp 122 |
. . . 4
 DECID DECID  DECID 
   |
| 20 | 19 | adantlr 460 |
. . 3
  DECID
DECID  DECID
 DECID     |
| 21 | | biassdc 1326 |
. . 3
DECID DECID DECID 
     
  
          |
| 22 | 10, 18, 20, 21 | syl3c 62 |
. 2
  DECID
DECID  DECID
     
  
        |
| 23 | 17, 22 | bitr4d 189 |
1
  DECID
DECID  DECID
  
  
       |