ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7a Unicode version

Theorem dfsb7a 1911
Description: An alternate definition of proper substitution df-sb 1686. Similar to dfsb7 1908 in that it involves a dummy variable  z, but expressed in terms of  A. rather than  E.. For a version which only requires  F/ z ph rather than  z and  ph being distinct, see sb7af 1910. (Contributed by Jim Kingdon, 5-Feb-2018.)
Assertion
Ref Expression
dfsb7a  |-  ( [ y  /  x ] ph 
<-> 
A. z ( z  =  y  ->  A. x
( x  =  z  ->  ph ) ) )
Distinct variable groups:    x, z    y,
z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfsb7a
StepHypRef Expression
1 nfv 1461 . 2  |-  F/ z
ph
21sb7af 1910 1  |-  ( [ y  /  x ] ph 
<-> 
A. z ( z  =  y  ->  A. x
( x  =  z  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator