ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dimatis Unicode version

Theorem dimatis 2058
Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some  ph is  ps, and all  ps is  ch, therefore some  ch is  ph. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2041 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
dimatis.maj  |-  E. x
( ph  /\  ps )
dimatis.min  |-  A. x
( ps  ->  ch )
Assertion
Ref Expression
dimatis  |-  E. x
( ch  /\  ph )

Proof of Theorem dimatis
StepHypRef Expression
1 dimatis.maj . 2  |-  E. x
( ph  /\  ps )
2 dimatis.min . . . . 5  |-  A. x
( ps  ->  ch )
32spi 1469 . . . 4  |-  ( ps 
->  ch )
43adantl 271 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
5 simpl 107 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
64, 5jca 300 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ph ) )
71, 6eximii 1533 1  |-  E. x
( ch  /\  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282   E.wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator