![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dimatis | GIF version |
Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2041 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
dimatis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
dimatis.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
Ref | Expression |
---|---|
dimatis | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dimatis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
2 | dimatis.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
3 | 2 | spi 1469 | . . . 4 ⊢ (𝜓 → 𝜒) |
4 | 3 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
5 | simpl 107 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 4, 5 | jca 300 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜑)) |
7 | 1, 6 | eximii 1533 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |